[DDPG] Continuous Control with Deep Reinforcement Learning

论文链接:https://arxiv.org/abs/1509.02971
引用:Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint arXiv:1509.02971, 2015.

概述

Deep Deterministic Policy Gradient (DDPG) 是DPG算法加上深度学习的版本,是一个 model-free、off-policy 的 actor-critic 系算法,使用深度神经网络作为函数近似方程,主要的特点是支持高维度的连续的动作空间,这是在DQN算法上的一个主要突破,其实也就是因为是 actor-critic 系的算法,所以支持连续动作空间。

算法

DDPG 算法

主要创新点

  • 也使用了DQN算法中的 replay buffer / experience replay 的技术
  • 创新地使用了Soft Target Update的技术,与DQN中设立了target network,然后阶段性地将policy network的参数直接拷贝给target network的放法不同的是,这里虽然也是为actor和critic都分别设立了一个target版本,但是并不是直接将进行更新的policy版的参数全部直接拷贝给它们,而是使用了一个系数\tau来更新参数:\theta' \leftarrow \tau \theta + (1-\tau)\theta',且其中\tau \ll 1,这样就会将学习到的参数更加soft地拷贝给目标网络,从而极大地提升了训练中的稳定性。
  • 不同于DQN中使用的\epsilon-greedy的方式平衡exploration和exploitation,DDPG使用的方法是,在选择一个新的动作的时候,给policy函数返回的动作值增加一个噪音\mu'(s_t)=\mu(s_t|\theta_t^{\mu})+N,这里的N就是一个简单的概率分布,比如高斯分布,而且它的选择是根据不同的环境而设计的。
  • 为了是一套网络结构、算法与超参数适应于不同的实验环境,使用了 batch normalization 的技术,对于每一个batch中的样本进行了normalization,降低了方差。
  • 在论文中所提到的所有实验中,也是使用了同一套网络结构和超参数,从而验证了其稳定性、普适性和一般性

其他的点

  • 作者最后提到,也将这个算法应用于了DQN所涉及的多个Atari游戏中,并表示DDPG算法在达到相近效果时很大程度上地使用了更少的训练轮次
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容