mysql 到底是 join性能好,还是in一下更快呢

先总结:

  1. 数据量小的时候,用join更划算
  2. 数据量大的时候,join的成本更高,但相对来说join的速度会更快
  3. 数据量过大的时候,in的数据量过多,会有无法执行SQL的问题,待解决

事情是这样的,去年入职的新公司,之后在代码review的时候被提出说,不要写join,join耗性能还是慢来着,当时也是真的没有多想,那就写in好了,最近发现in的数据量过大的时候会导致sql慢,甚至sql太长,直接报错了。这次来浅究一下,到底是in好还是join好,仅目前认知探寻,有不对之处欢迎指正

以下实验仅在本机电脑试验

一、表结构

1、用户表

 CREATE TABLE `user` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '姓名',
  `gender` smallint DEFAULT NULL COMMENT '性别',
  `mobile` varchar(11) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '手机号',
  `create_time` datetime NOT NULL COMMENT '创建时间',
  PRIMARY KEY (`id`),
  UNIQUE KEY `mobile` (`mobile`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1005 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

2、订单表

CREATE TABLE `order` (
  `id` int unsigned NOT NULL AUTO_INCREMENT,
  `price` decimal(18,2) NOT NULL,
  `user_id` int NOT NULL,
  `product_id` int NOT NULL,
  `status` smallint NOT NULL DEFAULT '0' COMMENT '订单状态',
  PRIMARY KEY (`id`),
  KEY `user_id` (`user_id`),
  KEY `product_id` (`product_id`)
) ENGINE=InnoDB AUTO_INCREMENT=202 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

二、先来试少量数据的情况

用户表插一千条随机生成的数据,订单表插一百条随机数据

查下所有的订单以及订单对应的用户

下面从三个维度来看

多表连接查询成本 = 一次驱动表成本 + 从驱动表查出的记录数 * 一次被驱动表的成本

1、join

JOIN: explain format=json select order.id, price, user.name from order join user on order.user_id = user.id;

子查询: select order.id,price,user.name from order,user where user_id=user.id;

2、分开查

select id,price,user_id from order;

select name from user where id in (8, 11, 20, 32, 49, 58, 64, 67, 97, 105, 113, 118, 129, 173, 179, 181, 210, 213, 215, 216, 224, 243, 244, 251, 280, 309, 319, 321, 336, 342, 344, 349, 353, 358, 363, 367, 374, 377, 380, 417, 418, 420, 435, 447, 449, 452, 454, 459, 461, 472, 480, 487, 498, 499, 515, 525, 525, 531, 564, 566, 580, 584, 586, 592, 595, 610, 633, 635, 640, 652, 658, 668, 674, 685, 687, 701, 718, 720, 733, 739, 745, 751, 758, 770, 771, 780, 806, 834, 841, 856, 856, 857, 858, 882, 934, 942, 983, 989, 994, 995); [in的是order查出来的所有用户id]

如此看来,分开查和join查的成本并没有相差许多

3、代码层面

主要用php原生写了脚本,用ab进行10个同时的请求,看下时间,进行比较

ab -n 100 -c 10

in
 $mysqli = new mysqli('127.0.0.1', 'root', 'root', 'test');
 if ($mysqli->connect_error) {
     die('Connect Error (' . $mysqli->connect_errno . ') ' . $mysqli->connect_error);
 }

 $result = $mysqli->query('select `id`,price,user_id from `order`');
 $orders = $result->fetch_all(MYSQLI_ASSOC);

 $userIds = implode(',', array_column($orders, 'user_id')); // 获取订单中的用户id
 $result = $mysqli->query("select `id`,`name` from `user` where id in ({$userIds})");
 $users = $result->fetch_all(MYSQLI_ASSOC);// 获取这些用户的姓名

 // 将id做数组键
 $userRes = [];
 foreach ($users as $user) {
     $userRes[$user['id']] = $user['name'];
 }

 $res = [];
 // 整合数据
 foreach ($orders as $order) {
     $current = [];
     $current['id'] = $order['id'];
     $current['price'] = $order['price'];
     $current['name'] = $userRes[$order['user_id']] ?: '';
     $res[] = $current;
 }
 var_dump($res);

 // 关闭mysql连接

 $mysqli->close();
join
$mysqli = new mysqli('127.0.0.1', 'root', 'root', 'test');
if ($mysqli->connect_error) {
    die('Connect Error (' . $mysqli->connect_errno . ') ' . $mysqli->connect_error);
}

$result = $mysqli->query('select order.id, price, user.`name` from `order` join user on order.user_id = user.id;');
$orders = $result->fetch_all(MYSQLI_ASSOC);

var_dump($orders);
$mysqli->close();
复制代码

看时间的话,明显join更快一些

三、试下多一些数据的情况

user表现在10000条数据,order表10000条试下

1、join

2、分开

user

3、代码层面

in

join

三、试下多一些数据的情况

随机插入后user表十万条数据,order表一百万条试下

1、join

2、分开

order

user

order查出来的结果过长了,,,

3、代码层面

in

join

四、到底怎么才能更好

注:对于本机来说100000条数据不少了,更大的数据量害怕电脑卡死

总的来说,当数据量小时,可能一页数据就够放的时候,join的成本和速度都更好。数据量大的时候确实分开查的成本更低,但是由于数据量大,造成循环的成本更多,代码执行的时间也就越长。实验过程中发现,当in的数据量过大的时候,sql过长会无法执行,可能还要拆开多条sql进行查询,这样的查询成本和时间一定也会更长,而且如果有分页的需求的话,也无法满足。。。

感觉这两个方法都不是太好,各位小伙伴,有没有更好的方法呢?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,695评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,569评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,130评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,648评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,655评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,268评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,835评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,740评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,286评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,375评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,505评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,873评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,357评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,466评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,921评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,515评论 2 359

推荐阅读更多精彩内容