中文实体命名讲解(一)

这次我们分析一个中文NER项目,有了之前过一遍sequence_tagging_master项目的经历,我感觉这一次应该会对NER有更深入的理解。好了,完事开头难,项目的地址在这里

  • 首先看项目结构。
    image.png

    好吧有点一抹黑,先从README.md入手。

Recurrent neural networks for Chinese named entity recognition in TensorFlow

This repository contains a simple demo for chainese named entity recognition.

Contributer

Requirements

Model

The model is a birectional LSTM neural network with a CRF layer. Sequence of chinese characters are projected into sequence of dense vectors, and concated with extra features as the inputs of recurrent layer, here we employ one hot vectors representing word boundary features for illustration. The recurrent layer is a bidirectional LSTM layer, outputs of forward and backword vectors are concated and projected to score of each tag. A CRF layer is used to overcome label-bias problem.

Our model is similar to the state-of-the-art Chinese named entity recognition model proposed in Character-Based LSTM-CRF with Radical-Level Features for Chinese Named Entity Recognition.

Basic Usage

Default parameters:

  • batch size: 20
  • gradient clip: 5
  • embedding size: 100
  • optimizer: Adam
  • dropout rate: 0.5
  • learning rate: 0.001

Word vectors are trained with gensim version of word2vec on Chinese WiKi corpus, provided by Chuanhai Dong.

Train the model with default parameters:

$ python3 main.py --train=True --clean=True

Online evaluate:

$ python3 main.py

Suggested readings:

  1. Natural Language Processing (Almost) from Scratch.
    Propose a unified neural network architecture for sequence labeling tasks.
  2. Neural Architectures for Named Entity Recognition.
    End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF.
    Combine Character-based word representations and word representations to enhance sequence labeling systems.
  3. Transfer Learning for Sequence Tagging with Hierarchical Recurrent Networks.
    Multi-task Multi-domain Representation Learning for Sequence Tagging.
    Transfer learning for sequence tagging.
  4. Named Entity Recognition for Chinese Social Media with Jointly Trained Embeddings.
    Propose a joint training objective for the embeddings that makes use of both (NER) labeled and unlabeled raw text
  5. Improving Named Entity Recognition for Chinese Social Media with Word Segmentation Representation Learning.
    An Empirical Study of Automatic Chinese Word Segentation for Spoken Language Understanding and Named Entity Recognition.
    Using word segmentation outputs as additional features for sequence labeling syatems.
  6. Semi-supervised Sequence Tagging with Bidirectional Language Models.
    State-of-the-art model on Conll03 NER task, adding pre-trained context embeddings from bidirectional language models for sequence labeling task.
  7. Character-Based LSTM-CRF with Radical-Level Features for Chinese Named Entity Recognition.
    State-of-the-art model on SIGHAN2006 NER task.
  8. Named Entity Recognition with Bidirectional LSTM-CNNs.
    Method to apply lexicon features.

基本上就是说使用了双向LSTM进行训练并使用了通过中文Wiki语料训练的词向量进行特征提取,最后采用CRF动态规划进行预测以克服标注偏置问题。最后文末还给了一些参考资料,,,好吧,理论啥的咱也不懂,咱现在资格也不够,我们先跑完这个模型再说!
Basic Usage里,这里设置了一些默认参数如batch size的大小(20是不是有点小。)gradient clip是梯度的阈值,用来防止梯度爆炸问题,这里我们设置5,embedding size,词向量的维度,optimizer,优化器,Adam默认不解释,dropout用来防止过拟合,增加模型的鲁棒性,还有最后学习率0.001。

  • 先运行了一下main.py函数,这里我稍改动了一些地方,直接就能运行,看一下效果。
    image.png

    还在运行。。。好了,大概看一下使用方法,我们开始征程!
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352