Python爬取房产数据,在地图上展现!

小伙伴,我又来了,这次我们写的是用python爬虫爬取乌鲁木齐的房产数据并展示在地图上,地图工具我用的是 BDP个人版-免费在线数据分析软件,数据可视化软件 ,这个可以导入csv或者excel数据。

首先还是分析思路,爬取网站数据,获取小区名称,地址,价格,经纬度,保存在excel里。再把excel数据上传到BDP网站,生成地图报表

本次我使用的是scrapy框架,可能有点大材小用了,主要是刚学完用这个练练手,再写代码前我还是建议大家先分析网站,分析好数据,再去动手写代码,因为好的分析可以事半功倍,乌鲁木齐楼盘,2017乌鲁木齐新楼盘,乌鲁木齐楼盘信息 - 乌鲁木齐吉屋网 这个网站的数据比较全,每一页获取房产的LIST信息,并且翻页,点进去是详情页,获取房产的详细信息(包含名称,地址,房价,经纬度),再用pipelines保存item到excel里,最后在bdp生成地图报表,废话不多说上代码:

JiwuspiderSpider.py

# -*- coding: utf-8 -*-

fromscrapyimportSpider,Request

importre

fromjiwu.itemsimportJiwuItem

classJiwuspiderSpider(Spider):

name ="jiwuspider"

allowed_domains = ["wlmq.jiwu.com"]

start_urls = ['http://wlmq.jiwu.com/loupan']

defparse(self, response):

"""

解析每一页房屋的list

:param response:

:return:

"""

forurlinresponse.xpath('//a[@class="index_scale"]/@href').extract():

yieldRequest(url,self.parse_html)# 取list集合中的url  调用详情解析方法

# 如果下一页属性还存在,则把下一页的url获取出来

nextpage = response.xpath('//a[@class="tg-rownum-next index-icon"]/@href').extract_first()

#判断是否为空

ifnextpage:

yieldRequest(nextpage,self.parse)#回调自己继续解析

defparse_html(self,response):

"""

解析每一个房产信息的详情页面,生成item

:param response:

:return:

"""

pattern = re.compile('<script type="text/javascript">.*?lng = '(.*?)';.*?lat = '(.*?)';.*?bname = '(.*?)';.*?'

'address = '(.*?)';.*?price = '(.*?)';',re.S)

item = JiwuItem()

results = re.findall(pattern,response.text)

forresultinresults:

item['name'] = result[2]

item['address'] = result[3]

# 对价格判断只取数字,如果为空就设置为0

pricestr =result[4]

pattern2 = re.compile('(d+)')

s = re.findall(pattern2,pricestr)

iflen(s) ==0:

item['price'] =0

else:item['price'] = s[0]

item['lng'] = result[0]

item['lat'] = result[1]

yielditem

item.py

# -*- coding: utf-8 -*-

# Define here the models for your scraped items

#

# See documentation in:

# http://doc.scrapy.org/en/latest/topics/items.html

importscrapy

classJiwuItem(scrapy.Item):

# define the fields for your item here like:

name = scrapy.Field()

price =scrapy.Field()

address =scrapy.Field()

lng = scrapy.Field()

lat = scrapy.Field()

pass

pipelines.py 注意此处是吧mongodb的保存方法注释了,可以自选选择保存方式

# -*- coding: utf-8 -*-

# Define your item pipelines here

#

# Don't forget to add your pipeline to the ITEM_PIPELINES setting

# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html

importpymongo

fromscrapy.confimportsettings

fromopenpyxlimportworkbook

classJiwuPipeline(object):

wb = workbook.Workbook()

ws = wb.active

ws.append(['小区名称','地址','价格','经度','纬度'])

def__init__(self):

# 获取数据库连接信息

host = settings['MONGODB_URL']

port = settings['MONGODB_PORT']

dbname = settings['MONGODB_DBNAME']

client = pymongo.MongoClient(host=host, port=port)

# 定义数据库

db = client[dbname]

self.table = db[settings['MONGODB_TABLE']]

defprocess_item(self, item, spider):

jiwu = dict(item)

#self.table.insert(jiwu)

line = [item['name'], item['address'], str(item['price']), item['lng'], item['lat']]

self.ws.append(line)

self.wb.save('jiwu.xlsx')

returnitem

最后报表的数据

mongodb数据库

地图报表效果图:BDP分享仪表盘,分享可视化效果

https://me.bdp.cn/share/index.html?shareId=sdo_b697418ff7dc4f928bb25e3ac1d52348

V     X   获 取 更 多 精彩 内容

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容