多项式回归(Sklearn库)

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 十组样本数据
data = np.array([[ -2.95507616,  10.94533252],
       [ -0.44226119,   2.96705822],
       [ -2.13294087,   6.57336839],
       [  1.84990823,   5.44244467],
       [  0.35139795,   2.83533936],
       [ -1.77443098,   5.6800407 ],
       [ -1.8657203 ,   6.34470814],
       [  1.61526823,   4.77833358],
       [ -2.38043687,   8.51887713],
       [ -1.40513866,   4.18262786]])
m = data.shape[0]  # 样本大小
X = data[:, 0].reshape(-1, 1)  # 将array转换成矩阵
y = data[:, 1].reshape(-1, 1)
plt.plot(X, y, "b.")
plt.xlabel('X')
plt.ylabel('y')
plt.show()

# 线性回归
lin_reg = LinearRegression()
lin_reg.fit(X, y)
print(lin_reg.intercept_, lin_reg.coef_)  # 线性回归参数 [ 4.97857827] [[-0.92810463]]

X_plot = np.linspace(-3, 3, 1000).reshape(-1, 1)
# linspace(-3, 3, 1000)生成1000个-3到3之间固定间隔的数,reshape(-1, 1)将矩阵变为列向量
y_plot = np.dot(X_plot, lin_reg.coef_.T) + lin_reg.intercept_   # 计算线性方程y值。dot()是矩阵点积,.T是转置矩阵;
# lin_reg.coef_,lin_reg.intercept_分别是参数w,b
plt.plot(X_plot, y_plot, 'g-')
plt.plot(X, y, 'b.')
plt.xlabel('X')
plt.ylabel('y')
plt.savefig('regu-2.png', dpi=200)
h = np.dot(X.reshape(-1, 1), lin_reg.coef_.T) + lin_reg.intercept_
#print(mean_squared_error(h, y)) # 3.34 计算误差


# 多项式回归
poly_features = PolynomialFeatures(degree=2, include_bias=False) # 二维特征构造
X_poly = poly_features.fit_transform(X) #fit_transform()是数据预处理中的一个方法,
# fit即先对数据进行拟合,求得训练数据的固有属性,例如方差均值最值等属性,transform对数据进行归一化标准化等操作,将数据缩放映射至某个固定区间
#print(X_poly)

lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)
print(lin_reg.intercept_, lin_reg.coef_)  # 模型参数 [ 2.60996757] [[-0.12759678  0.9144504 ]]

X_plot = np.linspace(-3, 3, 1000).reshape(-1, 1)
X_plot_poly = poly_features.fit_transform(X_plot) #特征构造
y_plot = np.dot(X_plot_poly, lin_reg.coef_.T) + lin_reg.intercept_ #计算模型结果
plt.plot(X_plot, y_plot, 'r-')
plt.plot(X, y, 'b.')
plt.show()

执行结果:


regression2.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351