Spark Join 源码剖析①

一、Join 逻辑计划生成

和 Join 相关的逻辑层的优化规则主要包含以下几种:

ReorderJoin

EliminateOuterJoin

👍🏻DPP 动态分区裁剪

以及

👍🏻PushDownPredicates

中和 Join 相关的 predicate pushDown

二、Join 物理计划生成和选取

2.1、基本概念

在 Spark SQL 中,参与 Join 操作的两张表分别被称为流式表(StreamTable)和构件表(BuildTable),不同表的角色在 Spark SQL 中会通过一定的策略进行设定。通常来讲,系统会将大表设置为 StreamTable,小表设置为 BuildTable。流式表的迭代器为 streamIter,构建表的迭代器为 buildIter。遍历 streamIter 的每一条记录,然后在 buildIter 中查找匹配的记录。这个查找过程称为 build 过程。每次 build 操作的结果为一条 JoinedRow(A, B),其中 A 来自 streamedIter,B 来自 buildIter。

再例如,在 BroadcastHashJoin 中需要决定广播哪个数据表。这里的 BuildSide 可以简单理解为 “构建的一边”。

在 Spark 中,BuildSide 作为一个抽象类,包含 BuildLeft 和 BuildRight 两个子类,一般在构造 Join 的执行算子时,都会传入一个 BuildSide 的构造参数。在 JoinSelection 中通过 canBuildRightcanBuildLeft 判断一个 Join 类型能否 “构建” 右表和左表。

2.2、物理计划选取顺序

Join 物理执行计划的选取在 JoinSelection 中进行,其主要逻辑如下:

如果是一个等值 join(equi-join)且包含 join hint,我们依次查看 join hint:

  1. broadcast hint:如果 join 类型支持,使用 broadcast hash join。如果 left 和 right 都有 broadcast hint,选择 size 较小的一侧(基于统计数据)进行 broadcast
  2. sort merge hint:如果 join keys 是可排序的,使用 sort merge join。
  3. shuffle hash hint:如果 join 类型支持,如果 left 和 right 都设置了 shuffle hash hints,选择 size 较小的一侧作为 build side
  4. shuffle replicate NL hint:如果 join type 为 inner like,使用 cartesian product join(笛卡尔积)

JoinSelection 通过 ExtractEquiJoinKeys 来判断是否为等值 Join 并提取相关信息:


如果没有指定 hint 或 hint 不适用,Join 选择顺序如下:

  1. 尝试选用 broadcast hash join:如果 join 类型支持,且 join 的一侧 size 足够小能够 broadcast。如果都足够小,选择更小的一侧进行 broadcast(基于统计数据)
  2. 尝试选用 shuffle hash join:如果 join 类型支持,且 join 的一侧 size 足够小能够构建 local hash map,且该侧 size 显著小于另一侧,且 spark.sql.join.preferSortMergeJoin 为 false
  3. 尝试选用 sort merge join:如果 join keys 是可排序的
  4. 尝试选用笛卡尔积:如果是 inner like join
  5. 尝试选用 broadcast nested loop join:最后的兜底手段,可能会 OOM,如果这里 OOM 了,也没办法了

2.3、等值 Join 情况

注①:

createJoinWithoutHint 如下:

2.4、非等值 Join 情况

三、Join 物理计划执行

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容