OpenCV-Python教程:56.图像去噪

理论

在早先的章节里,我们看到很多图像平滑技术如高斯模糊,Median模糊等,它们在移除数量小的噪音时在某种程度上比较好用。在这些技术里,我们取像素周围的一小部分邻居,做一些类似于高斯平均权重,中值等替换掉中间的元素。简单说,移除一个像素的噪音是基于本地邻居的。

噪音有一个属性,噪音一般被认为是具有零平均值的随机变量。假设一个像素噪音,p = p0 + n, 其中p0是像素的真实值,n是那个像素的噪音。你可以从不同图像取大量的同一个像素(N)并计算他们的平均值,理想情况下,你应该得到p=p0,因为均值是0.

你可以自己通过一个简单例子验证一下。保持一个静止的摄像机对准一个位置多呆几秒,这会给你很多帧,或者是对一个场景的很多图像。然后写一些代码来找到视频里所有帧的平均值。比较最终的结果和第一帧。你可以看到噪点被去掉了。不幸的是这个简单的方法对于摄像机和场景的运动来说就不健壮了。而且经常你也只有一个噪音图像可用。

所以思路很简单,我们需要一套类似的图像来平均去掉噪点,假设图像上一个小窗口(比如5x5的窗口)。很有可能在图像里的某处还有一个相同的块。有时候是在它附近的邻居。用这样类似的块来做他们的平均会怎么样呢?对于这个特定的窗口,看下面的例子:

图像里蓝色的块看上去一样,绿色块看上去也类似,所以我们取一个像素,取它周围的一个小窗口,找到图像里和它类似的窗口,平均所有的窗口,然后用结果来替换掉这个像素。这哥方法就是非局部均值去噪。它要比其他我们之前介绍过的模糊技术要花更多时间。但是结果要更好。

对于彩色图像,图像先要转换成CIELAB颜色空间然后再分成L去噪和AB部分。

OpenCV里的图像去噪

OpenCV提供了这个技术的四个变形:

1.cv2.fastNlMeansDenoising() - 对于一个灰度图像的

2.cv2.fastNlMeansDenoisingColored() - 对于彩色图像的

3.cv2.fastNlMeansDenoisingMulti() - 对于短时间内拍摄的一序列图像的(灰度图像)

4.cv2.fastNlMeansDenoisingColoredMulti() - 和上面一眼个,不过是彩色图像。

通用参数如下:

·h: 决定过滤器强度的参数。更高的h值能够更好去噪,但是会去掉更多图像细节(10就ok)

·hForColorComponents: 和h一样,不过只是针对彩色图像的(一般和h一样)

·templateWindowSize:应该是奇数(推荐7)

·searchWindowSize:应该是奇数(推荐21)

我们会演示几个例子。

1.cv2.fastNlMeansDenoisingColored()

上面说过这事去除彩色图像噪点的(噪点应该是符合高斯分布的)

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('die.png')

dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21)

plt.subplot(121),plt.imshow(img)
plt.subplot(122),plt.imshow(dst)
plt.show()

下面是一个放大的结果。我的输入图像是一个σ=25的高斯噪点

2. cv2.fastNlMeansDenoisingMulti()

现在我们把方法应用到视频上,第一个参数是带噪点的帧的列表。第二个参数imgToDenoiseIndex 指定我们需要降哪一帧的噪,应该写输入列表里的帧的索引。第三个参数temporalWindowSize指定多少个周围的帧用来去噪。应该是奇数。这种情况下,temporalWindowSize数量的帧被用来去噪,其中中间帧是要去噪的。比如你传入了5帧的列表作为输入,imgToDenoiseIndex = 2, temporalWindowSize = 3.那么帧1,帧2, 帧3倍用来给帧2去噪,看下面的例子:

import numpy as np
import cv2
from matplotlib import pyplot as plt

cap = cv2.VideoCapture('vtest.avi')

# create a list of first 5 frames
img = [cap.read()[1] for i in xrange(5)]

# convert all to grayscale
gray = [cv2.cvtColor(i, cv2.COLOR_BGR2GRAY) for i in img]

# convert all to float64
gray = [np.float64(i) for i in gray]

# create a noise of variance 25
noise = np.random.randn(*gray[1].shape)*10

# Add this noise to images
noisy = [i+noise for i in gray]

# Convert back to uint8
noisy = [np.uint8(np.clip(i,0,255)) for i in noisy]

# Denoise 3rd frame considering all the 5 frames
dst = cv2.fastNlMeansDenoisingMulti(noisy, 2, 5, None, 4, 7, 35)

plt.subplot(131),plt.imshow(gray[2],'gray')
plt.subplot(132),plt.imshow(noisy[2],'gray')
plt.subplot(133),plt.imshow(dst,'gray')
plt.show()

它会花掉很多时间计算,上面的结果里,第一张图是原始帧,第二张图是噪点图,第三章是去噪的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容