实现one-hot编码的两种方法

实现one hot encode的两种方法

Approach 1: You can use get_dummies on pandas dataframe.

#  transform a given column into one hot. Use prefix to have multiple dummies
>>> import pandas as pd
>>> df = pd.DataFrame({'A': ['a','b','c'],'B': ['b','a','c']})
>>># Get one hot encoding of columns B...
>>> df
  A  B
0 a  b
1 b  a
2 c  c
>>> one_hot = pd.get_dummies(df['B'])
>>># Drop columns B as it is now encoded...
>>> df = df.drop('B', axis=1)
>>># Join the encoded df...
>>> df = df.join(one_hot)
>>> df
  A  a  b  c
0 a  0  1  0
1 b  1  0  0
2 c  0  0  1

一个定性特征哑编码的demo:

def one_hot(df, cols):
"""
    @param df pandas DataFrame

    @param cols a list of columns to encode

    @return a DataFrame with one-hot encoding
"""
for each in cols:
        dummies = pd.get_dummies(df[each], prefix=each, drop_first=False)
        df = pd.concat([df, dummies], axis=1)
return df

使用 sklearn进行特征变量哑编码:

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1,1,0], [0,2,1], [1,0,2]])
OneHotEncoder(categorical_features='all', dtype=,  handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_array([2,3,4])
>>> enc.feature_indices_array([0,2,5,9])
>>> enc.transform([[0,1,1]])<1x9 sparse matrix oftype'<class 'numpy.float64'>'with3stored elementsinCompressed Sparse Rowformat
>>> enc.transform([[0,1,1]]).toarray()
array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])

一个保存在全局的Label_Binarizer的demo:

from sklearn.preprocessing import LabelBinarizer
label_binarizer =LabelBinarizer()
label_binarizer.fit(all_your_labels_list)# need to be global or remembered to use it later
def one_hot_encode(x):
"""
One hot encode a list of sample labels. Return a one-hot encoded vector for each label.

    : x: List of sample Labels

    : return: Numpy array of one-hot encoded labels

    """
return label_binarizer.transform(x)

https://stackoverflow.com/questions/37292872/how-can-i-one-hot-encode-in-python

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,137评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,824评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,465评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,131评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,140评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,895评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,535评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,435评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,952评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,081评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,210评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,896评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,552评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,089评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,198评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,531评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,209评论 2 357

推荐阅读更多精彩内容