需求:流程图,连接节点的同时验证是否存在闭环
function DFS(i) {
console.log('正在访问结点' + nodes[i]);
//结点i变为访问过的状态
visited[nodes[i]] = 1;
for (let j = 0; j < nodes.length; j++) {
//如果当前结点有指向的结点
if (graph[nodes[i]][nodes[j]] != 0) {
//并且已经被访问过
if (visited[nodes[j]] == 1) {
isDAG = false; //有环
break;
} else if (visited[nodes[j]] == -1) {
//当前结点后边的结点都被访问过,直接跳至下一个结点
continue;
} else {
DFS(j); //否则递归访问
}
}
}
//遍历过所有相连的结点后,把本节点标记为-1
visited[nodes[i]] = -1;
}
//创建图,以邻接矩阵表示
function create(nodes, edges) {
for (let i = 0; i < nodes.length; i++) {
const pre = nodes[i];
graph[pre] = {};
for (let j = 0; j < nodes.length; j++) {
const next = nodes[j];
graph[pre][next] = 0;
}
}
for (let k = 0; k < edges.length; k++) {
const edge = edges[k];
graph[edge.source][edge.target] = 1;
}
//初始化color数组为0,表示一开始所有顶点都未被访问过
for (let i = 0; i < nodes.length; i++) {
visited[nodes[i]] = 0;
}
}
//邻接矩阵
const graph = {};
//结点个数和边的个数
//标记矩阵,0为当前结点未访问,1为访问过,-1表示当前结点后边的结点都被访问过。
const visited = {};
//是否是DAG(有向无环图)
let isDAG = true;
// 获取所有的节点
const edges = [
{
source: 'node2',
target: 'node3'
},
{
source: 'node1',
target: 'node2'
},
{
source: 'node3',
target: 'node1'
},
{
source: 'node4',
target: 'node2'
},
{
source: 'node4',
target: 'node3'
}
];
const nodes = [];
edges.forEach(e => {
const { source, target } = e;
if (!nodes.includes(source)) {
nodes.push(source);
}
if (!nodes.includes(target)) {
nodes.push(target);
}
});
create(nodes, edges);
//保证每个节点都遍历到,排除有的结点没有边的情况
for (let i = 0; i < nodes.length; i++) {
//该结点后边的结点都被访问过了,跳过它
if (visited[nodes[i]] == -1) {
continue;
}
DFS(i);
if (!isDAG) {
console.log('有环');
break;
}
}
if (isDAG) {
console.log('无环');
}
附原文链接:原文链接