关于条件随机场的问题和理解

将一下三块内容结合起来看比较好:

条件随机场的精彩总结性论述,更多详细信息可以参阅连接文章:http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf 
    Much work in learning with graphical models, especially in statistical natural-language processing, has focused on generative models that explicitly attempt to model a joint probability distribution p(y,x) over inputs and outputs. Although this approach has advantages, it also has important limitations. Not only can the dimensionality of x be very large, but the features may have complex dependencies, so constructing a probability distribution over them is difficult. Modeling the dependencies among inputs can lead to intractable models, but ignoring them can lead to reduced performance.

    A solution to this problem is a discriminative approach, similar to that taken in classifiers such as logistic regression. Here we model the conditional distribution p(y|x) directly, which is all that is needed for classification. This is the approach taken by conditional random fields (CRFs). CRFs are essentially a way of combining the advantages of discriminative classification and graphical modeling, combining the ability to compactly model multivariate outputs y with the ability to leverage a large number of input features x for prediction. The advantage to a conditional model is that dependencies that involve only variables in x play no role in the conditional model, so that an accurate conditional

李航-统计学习-线性链条件随机场
李航的书中对线性链条件随机场定义为如下所示,一开始难以理解,后来终于搞懂,式子中,索引i代表输出序列的位置索引,k代表两个输出序列之间的转移特征索引,即这种转移可能有多个特征,l代表每个输出序列位置对应的特征索引,即序列中每个节点也可能有多个特征。t和s只取1或0表征的是此特征是否存在,前面的lamda和mu表征的是每个特征的权重,这就和下面的神经网络联系在了一起。k个特征表征的是输出维度,每个维度的标量数值通过此处的权重来表征。


youtue -- https://www.youtube.com/watch?v=PGBlyKtfB74&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH&index=19
下图为上面视频中的截图,利用神经网络来获取节点特征向量,利用矩阵V表征状态间的转移特征,李航的书中也有类似的矩阵表示,但是书中的矩阵与此处的矩阵有所不同,具体可以参考原书。

最后CRF是判别模型,概率计算采用前向后向算法,训练采用极大似然估计训练,预测采用维特比算法。目前对书中算法的细节没有仔细研读,等有时间再细看。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容