2020-10-28DAY6--BB

安装和学习R包

安装和加载

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
library(dplyr)

dplyr五个基础函数

示例数据:使用内置数据集iris的简化版
test <- iris[c(1:2,51:52,101:102),]

  • 1.新增列mutate()
mutate(test, new = Sepal.Length * Sepal.Width)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species   new
## 1          5.1         3.5          1.4         0.2     setosa 17.85
## 2          4.9         3.0          1.4         0.2     setosa 14.70
## 3          7.0         3.2          4.7         1.4 versicolor 22.40
## 4          6.4         3.2          4.5         1.5 versicolor 20.48
## 5          6.3         3.3          6.0         2.5  virginica 20.79
## 6          5.8         2.7          5.1         1.9  virginica 15.66
  • 2.select(),按列筛选
    (1) 按列号筛选
select(test,1)
##     Sepal.Length
## 1            5.1
## 2            4.9
## 51           7.0
## 52           6.4
## 101          6.3
## 102          5.8
select(test,c(1,5))
##     Sepal.Length    Species
## 1            5.1     setosa
## 2            4.9     setosa
## 51           7.0 versicolor
## 52           6.4 versicolor
## 101          6.3  virginica
## 102          5.8  virginica
select(test,Sepal.Length)
##     Sepal.Length
## 1            5.1
## 2            4.9
## 51           7.0
## 52           6.4
## 101          6.3
## 102          5.8

(2)按列名筛选

select(test, Petal.Length, Petal.Width)
##     Petal.Length Petal.Width
## 1            1.4         0.2
## 2            1.4         0.2
## 51           4.7         1.4
## 52           4.5         1.5
## 101          6.0         2.5
## 102          5.1         1.9
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
##     Petal.Length Petal.Width
## 1            1.4         0.2
## 2            1.4         0.2
## 51           4.7         1.4
## 52           4.5         1.5
## 101          6.0         2.5
## 102          5.1         1.9

关于加与不加one_of

没有加上one_of

直接写列名
解答在:https://tidyselect.r-lib.org/reference/faq-external-vector.html

  • 3.filter()筛选行
filter(test, Species == "setosa")
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
filter(test, Species == "setosa"&Sepal.Length > 5 )
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
filter(test, Species %in% c("setosa","versicolor"))
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1          5.1         3.5          1.4         0.2     setosa
## 2          4.9         3.0          1.4         0.2     setosa
## 3          7.0         3.2          4.7         1.4 versicolor
## 4          6.4         3.2          4.5         1.5 versicolor
  • 4.arrange(),按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)#默认从小到大排序
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1          4.9         3.0          1.4         0.2     setosa
## 2          5.1         3.5          1.4         0.2     setosa
## 3          5.8         2.7          5.1         1.9  virginica
## 4          6.3         3.3          6.0         2.5  virginica
## 5          6.4         3.2          4.5         1.5 versicolor
## 6          7.0         3.2          4.7         1.4 versicolor
arrange(test, desc(Sepal.Length))#用desc从大到小
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1          7.0         3.2          4.7         1.4 versicolor
## 2          6.4         3.2          4.5         1.5 versicolor
## 3          6.3         3.3          6.0         2.5  virginica
## 4          5.8         2.7          5.1         1.9  virginica
## 5          5.1         3.5          1.4         0.2     setosa
## 6          4.9         3.0          1.4         0.2     setosa
  • 5.summarise():汇总
    对数据进行汇总操作,结合group_by使用实用性强
summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
##   mean(Sepal.Length) sd(Sepal.Length)
## 1           5.916667        0.8084965
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
## # A tibble: 6 x 5
## # Groups:   Species [3]
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
## *        <dbl>       <dbl>        <dbl>       <dbl> <fct>     
## 1          5.1         3.5          1.4         0.2 setosa    
## 2          4.9         3            1.4         0.2 setosa    
## 3          7           3.2          4.7         1.4 versicolor
## 4          6.4         3.2          4.5         1.5 versicolor
## 5          6.3         3.3          6           2.5 virginica 
## 6          5.8         2.7          5.1         1.9 virginica
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
##   Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
##   
## 1 setosa                     5                 0.141
## 2 versicolor                 6.7               0.424
## 3 virginica                  6.05              0.354

dplyr两个实用技能

  • 1:管道操作 %>% (cmd/ctr + shift + M)
    (加载任意一个tidyverse包即可用管道符号)
test %>% 
  group_by(Species) %>% 
  summarise(mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
##   Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
##   
## 1 setosa                     5                 0.141
## 2 versicolor                 6.7               0.424
## 3 virginica                  6.05              0.354
  • 2:count统计某列的unique值
count(test,Species)
## # A tibble: 3 x 2
##   Species        n
##   
## 1 setosa         2
## 2 versicolor     2
## 3 virginica      2

dplyr处理关系数据

  • 1.內连inner_join,取交集
  • 2.左连left_join
  • 3.全连full_join
  • 4.半连接:返回能够与y表匹配的x表所有记录semi_join
  • 5.反连接:返回无法与y表匹配的x表的所记录anti_join
  • 6.简单合并:在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数

本来找到了一个特别好的动图解释这些函数,开了个组会回来找不到了,哭泣,先放在这,改天找到了再加

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。