前情提要:
之前提到过的几行代码识别图片内容,以及本地深度学习的实现。
大家一定有些好奇,这些代码背后到底做了什么,是怎么做到的,能不能稍微展开看看?
今天就带给大家一堆视觉学习图像数据集以及最新方法论比较。
放心:完全免费。
https://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
这个网站是受到一个博客的启发(https://zybler.blogspot.com/2011/02/table-of-results-for-cifar-10-dataset.html),专门针对主要的视觉学习图像数据以及视觉识别方法论做的一个整理网站。
这个网站上有:包括原始的数据来源以及一些定制化数据,
还有最最重要的,就是关于视觉识别技术方法论的比较:
上图是经典的手写数字图片识别相关的实现效果以及具体的论文。
简单说,这个网站是图片内容识别的主流技术搜集地。
其中一个成功的吸引了笔者的注意:
这个是什么呢?这个是包含了100个分类的图像内容的数据集(此方面资深的别笑,我是小白):
Here is the list of classes in the CIFAR-100:
Superclass | Classes |
---|---|
aquatic mammals | beaver, dolphin, otter, seal, whale |
fish | aquarium fish, flatfish, ray, shark, trout |
flowers | orchids, poppies, roses, sunflowers, tulips |
food containers | bottles, bowls, cans, cups, plates |
fruit and vegetables | apples, mushrooms, oranges, pears, sweet peppers |
household electrical devices | clock, computer keyboard, lamp, telephone, television |
household furniture | bed, chair, couch, table, wardrobe |
insects | bee, beetle, butterfly, caterpillar, cockroach |
large carnivores | bear, leopard, lion, tiger, wolf |
large man-made outdoor things | bridge, castle, house, road, skyscraper |
large natural outdoor scenes | cloud, forest, mountain, plain, sea |
large omnivores and herbivores | camel, cattle, chimpanzee, elephant, kangaroo |
medium-sized mammals | fox, porcupine, possum, raccoon, skunk |
non-insect invertebrates | crab, lobster, snail, spider, worm |
people | baby, boy, girl, man, woman |
reptiles | crocodile, dinosaur, lizard, snake, turtle |
small mammals | hamster, mouse, rabbit, shrew, squirrel |
trees | maple, oak, palm, pine, willow |
vehicles 1 | bicycle, bus, motorcycle, pickup truck, train |
vehicles 2 | lawn-mower, rocket, streetcar, tank, tractor |
大家可以在多伦多大学的网站:https://www.cs.toronto.edu/~kriz/cifar.html
上找到相关的数据以及适合Python、Matlab、以及C语言使用的数据文件:
Download
Version | Size | md5sum |
---|---|---|
CIFAR-100 python version | 161 MB | eb9058c3a382ffc7106e4002c42a8d85 |
CIFAR-100 Matlab version | 175 MB | 6a4bfa1dcd5c9453dda6bb54194911f4 |
CIFAR-100 binary version (suitable for C programs) | 161 MB | 03b5dce01913d631647c71ecec9e9cb8 |
后续可以研究一下这个图像数据集在Julia上的实现和应用。
KevinZhang
Sep 5, 2018