Python学习笔记-3群18组-杜杜狼-2017.7.27

Lesson 33 RFM分析

根据客户活跃程度和交易金额贡献,进行客户价值细分的方法
R(Recency)近度: 客户最近一次交易时间的间隔;R越大,表示客户越久没发生过交易;
F(Frequency)频度:客户在最近一段时间内交易的次数;F越大,表示客户交易越频繁
M(Monetary)额度:客户在最近一段时间内交易的金额;M越大,表示客户价值越高

RFM分析过程

  • 计算RFM各项分值
    R_S 距离当前日期越近,得分越高,最高5分,最低1分
    F_S 交易频率越高,得分越高,最高5分,最低1分
    M_S 交易金额越高,得分越高,最高5分,最低1分
  • 汇总RFM分值
    RMF = 100 * R_S + 10 * F_S + 1 * M_S
  • 根据RFM 分值对客户分类

RFM分析前提

  • 最近有过交易行为的客户,再次发生交易的可能性要高于最近没有交易行为的客户
  • 交易频率较高的客户比交易频率较低的客户,更有可能再次发生交易行为
  • 过去所有交易总金额较多的客户,比交易总金额较少的客户,更有消费积极性

常规RFM数据格式

OrderID CustomerID DealDateTime Sales
订单编号 客户编号 交易时间 交易金额
#对R, F, M进行聚合运算
#R_Agg用的是Python 3写法,否则有warning
R_Agg = data.groupby(
    by=['CustomerID']
)['DateDiff'].agg(numpy.min).rename('amin': 'RecencyAgg')

F_Agg = data.groupby(
    by=['CustomerID']
)['OrderID'].agg({
    'FrequencyAgg': numpy.size
})

M_Agg = data.groupby(
    by=['CustomerID']
)['Sales'].agg({
    'MonetaryAgg': numpy.sum
})

#把聚合后的结果汇总进一张表
aggData = R_Agg.join(F_Agg).join(M_Agg)

#对R, M, F score利用正态分布分组,都是分成五组
bins = aggData.RecencyAgg.quantile(
    q=[0, 0.2, 0.4, 0.6, 0.8, 1],
    interpolation='nearest'
)
#避免最小值不闭合的错误
bins[0] = 0
labels = [5, 4, 3, 2, 1]
R_S = pandas.cut(
    aggData.RecencyAgg, 
    bins, labels=labels
)

bins = aggData.FrequencyAgg.quantile(
    q=[0, 0.2, 0.4, 0.6, 0.8, 1],
    interpolation='nearest'
)
bins[0] = 0;
labels = [1, 2, 3, 4, 5];
F_S = pandas.cut(
    aggData.FrequencyAgg, 
    bins, labels=labels
)

bins = aggData.MonetaryAgg.quantile(
    q=[0, 0.2, 0.4, 0.6, 0.8, 1],
    interpolation='nearest'
)
bins[0] = 0
labels = [1, 2, 3, 4, 5]
M_S = pandas.cut(
    aggData.MonetaryAgg, 
    bins, labels=labels
)

#根据行业专家给出的经验公式,计算RFM得分
aggData['RFM'] = 100*R_S.astype(int) + 10*F_S.astype(int) + 1*M_S.astype(int)

/*按照RMF对用户类型的划分,将所有用户分成8类:
高价值客户,重点保持客户,重点发展客户,重点挽留客户,
一般价值客户,一般保持客户,一般发展客户,潜在客户*/
bins = aggData.RFM.quantile(
    q=[
        0, 0.125, 0.25, 0.375, 0.5, 
        0.625, 0.75, 0.875, 1
    ],
    interpolation='nearest'
)
bins[0] = 0
labels = [1, 2, 3, 4, 5, 6, 7, 8]
aggData['level'] = pandas.cut(
    aggData.RFM, 
    bins, labels=labels
)

Lesson 34 矩阵分析

根据事物(如产品,服务等)的两个重要属性(指标)作为分析的依据,进行关联分析,找出解决问题的一种分析方法
matplotlib相关问题后续学习

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容