为什么 Spark Streaming + Kafka 无法保证 exactly once?

Streaming job 的调度与执行

结合文章 揭开Spark Streaming神秘面纱④ - job 的提交与执行我们画出了如下 job 调度执行流程图:

为什么很难保证 exactly once

上面这张流程图最主要想说明的就是,job 的提交执行是异步的,与 checkpoint 操作并不是原子操作。这样的机制会引起数据重复消费问题:

为了简化问题容易理解,我们假设一个 batch 只生成一个 job,并且 spark.streaming.concurrentJobs 值为1,该值代表 jobExecutor 线程池中线程的个数,也即可以同时执行的 job 的个数。

假设,batch duration 为2s,一个 batch 的总共处理时间为1s,此时,一个 batch 开始了,第一步生成了一个 job,假设花了0.1s,然后把该 job 丢到了 jobExecutor 线程池中等待调度执行,由于 checkpoint 操作和 job 在线程池中执行是异步的,在0.2s 的时候,checkpoint 操作完成并且此时开始了 job 的执行。

注意,这个时候 checkpoint 完成了并且该 job 在 checkpoint 中的状态是未完成的,随后在第1s 的时候 job 完成了,那么在这个 batch 结束的时候 job 已经完成了但该 job 在 checkpoint 中的状态是未完成的(要了解 checkpoint 都保存了哪些数据请移步Spark Streaming的还原药水——Checkpoint)。

在下一个 batch 运行到 checkpoint 之前就挂了(比如在拉取数据的时候挂了、OOM 挂了等等异常情况),driver 随后从 checkpoint 中恢复,那么上述的 job 依然是未执行的,根据使用的 api 不同,对于这个 job 会再次拉取数据或从 wal 中恢复数据重新执行该 job,那么这种情况下该 job 的数据就就会被重复处理。比如这时记次的操作,那么次数就会比真实的多。

如果一个 batch 有多个 job 并且spark.streaming.concurrentJobs大于1,那么这种情况就会更加严重,因为这种情况下就会有多个 job 已经完成但在 checkpoint 中还是未完成状态,在 driver 重启后这些 job 对应的数据会被重复消费处理。


另一种会导致数据重复消费的情况主要是由于 Spark 处理的数据单位是 partition 引起的。比如在处理某 partition 的数据到一半的时候,由于数据内容或格式会引起抛异常,此时 task 失败,Spark 会调度另一个同样的 task 执行,那么此时引起 task 失败的那条数据之前的该 partition 数据就会被重复处理,虽然这个 task 被再次调度依然会失败。若是失败还好,如果某些特殊的情况,新的 task 执行成功了,那么我们就很难发现数据被重复消费处理了。

如何保证 exactly once

至于如何才能保证 exactly once,其实要根据具体情况而定(废话)。总体来说,可以考虑以下几点:

  1. 业务是否不能容忍即使是极少量的数据差错,如果是那么考虑 exactly once。如果可以容忍,那就没必要非实现 exactly once 不可
  2. 即使重复处理极小部分数据会不会对最终结果产生影响。若不会,那重复处理就重复吧,比如排重统计
  3. 若一定要保证 exactly once,应该考虑将对 partition 处理和 checkpoint或自己实现类似 checkpoint 功能的操作做成原子的操作;并且对 partition 整批数据进行类似事物的处理
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容