关于数分

数据分析可以是一个职业,一份工作,也可以是一种思维方式。

从Python爬虫到Python可视化,再到数据清洗、数据挖掘算法等,而在日常工作中,我们除了需要熟练掌握数据分析工具的使用外,更主要的是培养自己的数据分析思维。

如果我们把生命线看作是数据可视化,能从中发现什么规律呢?

举个例子,如果想知道自己是如何挣钱的,可以分析自己以往挣钱的经历,也可以是赔钱的经历,把它们写在一个时间轴上,纵坐标是发生的事件,这个事件对你的影响越大,纵坐标的绝对值就越大。通过生命线的分析,我们先把这些事件按照时间的顺序记录下来,然后记录它们的影响力。实际上这些事件,影响力 y 和时间 x 就是你的生命线历史数据,画出生命线之前,你不必思考它们之间的规律是什么。画出来之后,用30 分钟的时间,仔细思考和分析它们之间有什么关联。

画生命线之前,我们首先需要有客观的记录数据,生命线就相当于数据可视化,更容易让我们找到规律。可以对这些事件打上不同的标签,比如 12 岁的时候给报社投稿挣到了 180 元,26 岁做自媒体,每个月有2万收入等等,那么两件事都可以打上“写作”这个标签。打标签是一种抽象能力,当你对这些事件逐一分析打标签的时候,就有可能从更高的维度上观察到这些事件的规律。

除了分析挣钱、找工作以外,通过生命线做数据分析还它可以分析你的感情经历、是否有偏财运等等。数据是非常重要的宝藏,只是你需要知道如何观察它,使用它。

通过历史才能看到未来,如果我们不去分析这些历史,就没有办法找到未来的规律。大到国家,小到个人,都是如此。这也是为什么很多成功人士经常读书的原因之一吧。通过总结别人的成功或者失败的经验,可以启迪自己的人生道路。


在面试之前,最重要的信息就是简历。HR会通过简历筛选符合要求的人,一般来说会根据简历来看职业经历是否具有连续性,比如说这个人做过行政,又做过销售,现在面试数据分析的工作,那么对于HR来说,他就没有找到职业方向。所以有些人在投递某个职位前,会特地对简历做有针对性的修改,比如重点呈现和数据分析相关的经历,其他关系不大的经历都一一删除,哪怕经历再丰富。不相关的经历其实就是干扰数据,这些并不是HR想要看到的!


提问是最好的老师

实际上提问本身就是一种维度的观察。很多人在做数据分析的时候,首先遇到的问题是没有数据怎么办?数据从哪里来?其实在找数据之前,我们应该先问自己一个问题,我要解决什么问题?要分析什么规律?比如说,你想观察自己挣钱模式的规律,或者想解决个人的情感问题,再或者,想找到一份适合自己的工作等。我们首先需要定义一个目标。

然后围绕这个目标再问自己,这些数据可能会在哪里?是通过分析自己过去的经历找,还是从网上找相关的信息?都有哪些渠道可以收集到这些信息?有一个好的问题,才会有好的答案。问题可以帮助我们关注事物的不同方面,而且通常是一些重要的维度,对我们全面客观地分析一件事是非常有好处的。

从科技进步来看,很多时候都是先有一个问题,再有无数的人前赴后继去解决它。比如世界三大数学猜想,费马猜想、四色猜想和哥德巴赫猜想。比如费马大定理是费马在 1637 年提出的,此后的 300 年间有无数数学家试图去验证它。

学会提问不仅可以帮助我们对事物有更全面的认识,还可以让我们变被动为主动。要知道在职场上,大部分人的工作状态都属于被动性,比如等着领导下任务、数据分析结果没出来就怪数据不完整,质量不够好等。被动的状态往往能量很低,或者说创造性很低。只有当你主动思考,寻找答案的时候,才更可能会有有创造力的发现。


学会分享是最快的成长

如果说培养数据思维从提问开始,那么把总结分享作为结束则是最适合不过的。把学到的知识分享给身边的朋友,可以锻炼我们的逻辑性,分享的过程也是对知识重新梳理的过程。另一方面也可以让我们获得别人的反馈,更容易得到正反馈的愉悦。就像我们在做机器学习训练的时候,如果训练没有结果反馈,我们就无法客观地了解对知识的掌握程度。如果能得到别人的反馈,就更容易有收获,训练的收敛速度也会越快。

所以在某种程度上,可以把分享的过程,理解是在测试集上做验证的过程。它会让你收获更多,成长更快。


培养数据分析思维是重要不紧急的事

你可能会说:“道理我都懂,可就是做的时候想不起来。”那是怎么回事呢?实际上,培养数据分析思维是重要不紧急的事。在工作中,我们经常会被紧急的事情占据带宽。这些紧急的事情对当下很重要,但是放长远来看重要性就很弱了。而拉开我们人生差距的,恰恰是那些重要不紧急的事情上,而不是在于我们每天处理了多少紧急的事。

这点很容易理解,毕竟人都有惰性,紧急的事情来了一般都会优先处理。不过你要换一种思考方式,既然我们人生的差距不是在于做过多少紧急的事,而是在于做过多少重要的事,那么从工作的第一天开始,我就应该着重积累重要的事,即使它目前并不紧急。

这样你会发现,当你做过的重要事情越来越多的时候,紧急的事情也就越来越少了。比如你想着如何找到一份更高薪酬更适合自己工作的时候,就不用着急每个月还贷款的事情了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352