2018-08-22把gglot2默认图变漂亮

一直以为ggplot图给出的默认图很丑,后来才觉得这蕴含了大量的智慧,如果一开始就给出漂亮的图,大家就懒的改,将来就会千篇一律。一开始丑一点,后头可以千姿百态、姹紫嫣红。说归说,改theme的方法有很多,下面就是一例。

来自网络博客https://www.jumpingrivers.com/blog/styling-ggplot2-r-graphics/

Styling ggplot2 graphics

In my previous post, we demonstrated that contrary to popular opinion, it is possible to generate attractive looking plots using just base graphics. Although we did confess, that it did take a lot of time and effort. In this post, we repeat the same exercise. Using the dreaded irisdata set, we’ll first create the default ggplot2 graph, before applying a bit of care and attention.

The standard ggplot version

The standard scatter plot is straightforward to create. Load the package

library("ggplot2")

Then create a scatter plot with the wonderful grey background

## ggplot2 even spells colour correctly ;)
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) + 
  geom_point(aes(colour = Species))
image

Unlike the base R offering, the list of possible improvements to this plot is pleasingly short. Basically, it’s

  • the axis labels (but they come from our column headings)
  • colours (red & blue aren’t the best combination)

So overall, pretty good. Other aspects that could be improved are

  • grey background
  • direct labels on the points
  • starting the x-axis at 4, not 4.2

Styling the plot using only ggplot2

Using only ggplot2 (and a little bit of dplyr love), we can improve significantly and easily improve the graph. First, we’ll capitalise the legend key. I find it easier to manipulate the data directly,

library("dplyr")
iris = mutate(iris, Species = stringr::str_to_title(Species))

With the data tweaked, we can get to the serious business of styling the plot. As the plot will contain a number of components it makes sense to create intermediate objects. As the points overlap, we’ll change from geom_point(), to geom_jitter(). This geom wiggles the points and allow us to see overlapping points:

g = ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) + 
  geom_jitter(aes(colour = Species)) + 
  xlab("Sepal length") + ylab("Sepal width") + # Improve axis labels
  ggtitle("The infamous Iris plot") # Title
g
image

The changes we’ve made so far would impossible for any package to do for us – how would the package know the plot title? We can now improve the look and feel of the plot. There are two ways of complementary ways of doing this: scales and themes. The ggplot scales control things like colours and point size. In the latest version of ggplot2, version 3.0.0, the Viridis colour palette was introduced. This palette is particularly useful for creating colour-blind friendly palettes

g + scale_colour_viridis_d() # d for discrete

The theme controls elements such as grid lines, fonts, labels. I’m partial to theme_minimal()

g + scale_colour_viridis_d() + 
  theme_minimal()
image

The hrbrthemes package

We don’t just have to use the themes that come with ggplot2, we can use themes provided by other packages. The hrbrthemes packages contain a nice theme called ipsum that’s similar to the minimal theme, but also tweaks the font and allows sub-headings. There is also an associated colour scheme called scale_colour_ipsum()`. An additional improvement we’ll make, is to drop the legend and place the text directly on the chart. After loading the package

library("hrbrthemes")

we create a data frame with the label positions

labels = data.frame(x = c(5, 5.3, 7), y = c(4.2, 2.1, 3.7), 
                    Species = c("Setosa", "Versicolor", "Virginica"))

We construct the plot as usual

ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) + 
  geom_jitter(aes(colour = Species)) + 
  theme_ipsum() + 
  labs(x = "Sepal length", y="Sepal width",
       title = "The infamous Iris data set",
       subtitle = "Thanks @hrbrmstr for the theme",
       caption = "jumpingrivers.com") + 
  scale_colour_ipsum(guide = FALSE) + 
  geom_text(data = labels, aes(x, y, label = Species, colour = Species)) + 
  xlim(c(4, 8))
image

Notice we can add data from two data sets onto a ggplot with relative ease.

Thanks for reading, see you next time!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352