Elasticsearch 7.x 深入【5】analyze API及自定义分词器

1. 借鉴

极客时间 阮一鸣老师的Elasticsearch核心技术与实战
Elasticsearch 分词器
Elasticsearch 默认分词器和中分分词器之间的比较及使用方法
Elasticsearch系列---使用中文分词器
官网 character filters
官网 tokenizers
官网 token filters

2. 开始

一、analyze api

方式1 指定分词器

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "Hello Lady, I'm Elasticsearch ^_^"
}

方式2 指定索引及属性字段

GET /tmdb_movies/_analyze
{
  "field": "title",
  "text": "Basketball with cartoon alias"
}

方式3 自定义分词

GET /_analyze
{
  "tokenizer": "standard",
  "filter": ["lowercase"],
  "text": "Machine Building Industry Epoch"
}

二、自定义分词器

  • 分词器是由三部分组成的,分别是character filter, tokenizer, token filter

character filter[字符过滤器]

处理原始文本,可以配置多个,会影响到tokenizer的position和offset信息
在es中有几个默认的字符过滤器

  • HTML Strip
    去除html标签
  • Mapping
    字符串替换
  • Pattern Replace
    正则匹配替换

举个栗子

html_strip
GET _analyze
{
  "tokenizer": "keyword",
  "char_filter": ["html_strip"],
  "text": "<br>you know, for search</br>"
}
  • 结果
{
  "tokens" : [
    {
      "token" : """

you know, for search

""",
      "start_offset" : 0,
      "end_offset" : 29,
      "type" : "word",
      "position" : 0
    }
  ]
}
mapping
GET _analyze
{
  "tokenizer": "whitespace",
  "char_filter": [
    {
      "type": "mapping",
      "mappings": ["- => "]
    },
    "html_strip"
  ],
  "text": "<br>中国-北京 中国-台湾 中国-人民</br>"
}
  • 结果
{
  "tokens" : [
    {
      "token" : "中国北京",
      "start_offset" : 4,
      "end_offset" : 9,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "中国台湾",
      "start_offset" : 10,
      "end_offset" : 15,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "中国人民",
      "start_offset" : 16,
      "end_offset" : 21,
      "type" : "word",
      "position" : 2
    }
  ]
}
pattern_replace
GET /_analyze
{
  "tokenizer": "keyword",
  "char_filter": [
    {
      "type": "pattern_replace",
      "pattern": "https?://(.*)",
      "replacement": "$1"
    }],
    "text": "https://www.elastic.co"
}
  • 结果
{
  "tokens" : [
    {
      "token" : "www.elastic.co",
      "start_offset" : 0,
      "end_offset" : 22,
      "type" : "word",
      "position" : 0
    }
  ]
}

tokenizer[分词器]

将原始文本按照一定规则,切分成词项(字符处理)
在es中有几个默认的分词器

  • standard
  • letter
  • lowercase
  • whitespace
  • uax url email
  • classic
  • thai
  • n-gram
  • edge n-gram
  • keyword
  • pattern
  • simple
  • char group
  • simple pattern split
  • path

举个栗子

path_hierarchy
GET /_analyze
{
  "tokenizer": "path_hierarchy",
  "text": ["/usr/local/bin/java"]
}
  • 结果
{
  "tokens" : [
    {
      "token" : "/usr",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "/usr/local",
      "start_offset" : 0,
      "end_offset" : 10,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "/usr/local/bin",
      "start_offset" : 0,
      "end_offset" : 14,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "/usr/local/bin/java",
      "start_offset" : 0,
      "end_offset" : 19,
      "type" : "word",
      "position" : 0
    }
  ]
}

token filter[分词过滤]

将tokenizer输出的词项进行处理,如:增加,修改,删除
在es中有几个默认的分词过滤器

  • lowercase
  • stop
  • uppercase
  • reverse
  • length
  • n-gram
  • edge n-gram
  • pattern replace
  • trim
  • ...[更多参照官网,目前仅列举用到的]

举个栗子

GET /_analyze
{
  "tokenizer": "whitespace",
  "filter": ["stop"],
  "text": ["how are you i am fine thank you"]
}

三、自定义分词器

自定义也无非是定义char_filter,tokenizer,filter(token filter)

DELETE /my_analysis
PUT /my_analysis
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "type": "custom",
          "char_filter": [
            "my_char_filter"
            ],
          "tokenizer": "my_tokenizer",
          "filter": [
            "my_tokenizer_filter"
            ]
        }
      },
      "char_filter": {
        "my_char_filter": {
          "type": "mapping",
          "mappings": ["_ => "]
        }
      },
      "tokenizer": {
        "my_tokenizer": {
          "type": "pattern",
          "pattern": "[,.!? ]"
        }
      },
      "filter": {
        "my_tokenizer_filter": {
          "type": "stop",
          "stopword": "__english__"
        }
      }
    }
  }
}
POST /my_analysis/_analyze
{
  "analyzer": "my_analyzer",
  "text": ["Hello Kitty!, A_n_d you?"]
}

3. 大功告成

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342