094-BigData-22Hive数据类型及操作

上一篇:093-BigData-21Hive介绍和安装

一、Hive数据类型

3.1 基本数据类型

image.png

对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能 其中最多能存储多少个字符,理论上它可以存储2GB的字符数。

3.2 集合数据类型

image.png

Hive有三种复杂数据类型ARRAY、MAP 和 STRUCT。ARRAY和MAP与Java中的Array和Map类似,而STRUCT与C语言中的Struct类似,它封装了一个命名字段集合,复杂数据类型允许任意层次的嵌套。

create table heheee(来试试 string,来试试1 string,来试试2 string) row format delimited fields terminated by '\t';

案例实操

1)假设某表有如下一行,我们用JSON格式来表示其数据结构。在Hive下访问的格式为

{
    "name": "songsong",
    "friends": ["bingbing" , "lili"] ,       //列表Array, 
    "children": {                      //键值Map,
        "xiao song": 18 ,
        "xiaoxiao song": 17  
  }
    "address": {                      //结构Struct,
        "street": "hai dian qu" ,
        "city": "beijing" 
    }
}

2)基于上述数据结构,我们在Hive里创建对应的表,并导入数据。

创建本地测试文件test.txt

songsong,bingbing_lili,xiao song:18_xiaoxiao song:17,hai dian qu_beijing
yangyang,caicai_susu,xiao yang:18_xiaoxiao yang:19,chao yang_beijing

注意,MAP,STRUCT和ARRAY里的元素间关系都可以用同一个字符表示,这里用“_”。

3)Hive上创建测试表test

create table test(
name string,
friends array<string>,
children map<string, int>,
address struct<street:string, city:string>
)
row format delimited fields terminated by ','
collection items terminated by '_'
map keys terminated by ':'
lines terminated by '\n';

字段解释:

row format delimited fields terminated by ',' -- 列分隔符
collection items terminated by '_' --MAP STRUCT 和 ARRAY 的分隔符(数据分割符号)
map keys terminated by ':' -- MAP中的key与value的分隔符
lines terminated by '\n'; -- 行分隔符

4)导入文本数据到测试表

hive (default)> load data local inpath '/opt/module/datas/test.txt' into table test;

5)访问三种集合列里的数据,以下分别是ARRAY,MAP,STRUCT的访问方式

hive (default)> select friends[1]as`朋友`,children['xiao song']as`年龄`,address.city from test where name="songsong";
OK
_c0     _c1     city
lili    18      beijing
Time taken: 0.076 seconds, Fetched: 1 row(s)

如果起别名:select friends[1] as pengyou from test where name="songsong";

3.3 类型转化

Hive的原子数据类型是可以进行隐式转换的,类似于Java的类型转换,例如某表达式使用INT类型,TINYINT会自动转换为INT类型,但是Hive不会进行反向转化,例如,某表达式使用TINYINT类型,INT不会自动转换为TINYINT类型,它会返回错误,除非使用CAST操作。

1)隐式类型转换规则如下。
(1)任何整数类型都可以隐式地转换为一个范围更广的类型,如TINYINT可以转换成INT,INT可以转换成BIGINT。
(2)所有整数类型、FLOAT和STRING类型都可以隐式地转换成DOUBLE。
(3)TINYINT、SMALLINT、INT都可以转换为FLOAT。
(4)BOOLEAN类型不可以转换为任何其它的类型。

2)可以使用CAST操作显示进行数据类型转换,例如CAST('1' AS INT)将把字符串'1' 转换成整数1;如果强制类型转换失败,如执行CAST('X' AS INT),表达式返回空值 NULL。

四、DDL数据定义

数据库模式定义语言DDL(Data Definition Language),是用于描述数据库中要存储的现实世界实体的语言。

4.1 创建数据库

1)创建一个数据库,数据库在HDFS上的默认存储路径是/user/hive/warehouse/*.db。

hive (default)> create database db_hive;

可能出现的报错:

FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:For direct MetaStore DB connections, we don't support retries at the client level.)

解决办法https://blog.csdn.net/mo_ing/article/details/81219533

个人解决版本:使用mysql-connector-java-5.1.27.jar,而不是mysql-connector-java-5.1.18.jar

2)避免要创建的数据库已经存在错误,增加if not exists判断。(标准写法)

hive> create database db_hive;
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Database db_hive already exists
hive (default)> create database if not exists db_hive;

3)创建一个数据库,指定数据库在HDFS上存放的位置
hive (default)> create database db_hive2 location '/db_hive2.db';

4.2 修改数据库

用户可以使用ALTER DATABASE命令为某个数据库的DBPROPERTIES设置键-值对属性值,来描述这个数据库的属性信息。数据库的其他元数据信息都是不可更改的,包括数据库名和数据库所在的目录位置。

hive (default)> alter database db_hive set dbproperties('createtime'='20190506');
在mysql中查看修改结果
hive> desc database extended db_hive;
db_name comment location owner_name owner_type parameters
db_hive hdfs://bigdata111:8020/user/hive/warehouse/db_hive.db AncientMing USER {createtime=20190506}

4.3 查询数据库

4.3.1 显示数据库

1)显示数据库
hive> show databases;
2)过滤显示查询的数据库
hive> show databases like 'db_hive*';
OK
db_hive
db_hive_1

4.3.2 查看数据库详情

1)显示数据库信息
hive> desc database db_hive;
OK
db_hive hdfs://bigdata111:8020/user/hive/warehouse/db_hive.db AncientMingUSER

2)显示数据库详细信息,extended

hive> desc database extended db_hive;
OK
db_hive hdfs://bigdata111:8020/user/hive/warehouse/db_hive.db AncientMingUSER {createtime=20190506}

4.3.3 切换当前数据库

hive (default)> use db_hive;

4.4 删除数据库

1)删除空数据库

hive>drop database db_hive2;

2)如果删除的数据库不存在,最好采用 if exists判断数据库是否存在

hive> drop database db_hive2;
FAILED: SemanticException [Error 10072]: Database does not exist: db_hive

hive> drop database if exists db_hive2;

3)如果数据库不为空,可以采用cascade命令,强制删除

hive> drop database db_hive;
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. InvalidOperationException(message:Database db_hive is not empty. One or more tables exist.)

hive> drop database db_hive cascade;

4.5 创建表

1)建表语法

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name 
[(col_name data_type [COMMENT col_comment], ...)] 
[COMMENT table_comment] 
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 
[CLUSTERED BY (col_name, col_name, ...) 
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] 
[ROW FORMAT row_format] 
[STORED AS file_format] 
[LOCATION hdfs_path]

2)字段解释说明:

(1)CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
(2)EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
(3)COMMENT:为表和列添加注释。
(4)PARTITIONED BY创建分区表
(5)CLUSTERED BY创建分桶表
(6)SORTED BY不常用
(7)ROW FORMAT
DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
用户在建表的时候可以自定义SerDe或者使用自带的SerDe。如果没有指定ROW FORMAT 或者ROW FORMAT DELIMITED,将会使用自带的SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的SerDe,Hive通过SerDe确定表的具体的列的数据。
(8)STORED AS指定存储文件类型
常用的存储文件类型:SEQUENCEFILE(二进制序列文件)、TEXTFILE(文本)、RCFILE(列式存储格式文件)
如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
(9)LOCATION :指定表在HDFS上的存储位置。
(10)LIKE允许用户复制现有的表结构,但是不复制数据。

4.5.1 管理表(内部表)

1)理论

默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive会(或多或少地)控制着数据的生命周期。Hive默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(例如,/user/hive/warehouse)所定义的目录的子目录下。 当我们删除一个管理表时,Hive也会删除这个表中数据。管理表不适合和其他工具共享数据。

2)案例实操
(1)普通创建表

create table if not exists student2(
id int, name string
)
row format delimited fields terminated by '\t'
stored as textfile
location '/user/hive/warehouse/student2';

(2)根据查询结果创建表(查询的结果会添加到新创建的表中)

create table if not exists student3
as select id, name from student;

(3)根据已经存在的表结构创建表

create table if not exists student4 like student;

(4)查询表的类型

hive (default)> desc formatted student2;
Table Type: MANAGED_TABLE

4.6 分区表

分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。Hive中的分区就是分目录,把一个大的数据集根据业务需要分割成小的数据集。在查询时通过WHERE子句中的表达式选择查询所需要的指定的分区,这样的查询效率会提高很多。

4.5.2 外部表

1)理论

因为表是外部表,所以Hive并非认为其完全拥有这份数据。删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉。

2)管理表和外部表的使用场景:

每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。

3)案例实操

分别创建部门和员工外部表,并向表中导入数据。
(1)原始数据

(2)建表语句
创建部门表

create external table if not exists default.dept(
deptno int,
dname string,
loc int
)
row format delimited fields terminated by '\t';

创建员工表

create external table if not exists default.emp(
empno int,
ename string,
job string,
mgr int,
hiredate string, 
sal double, 
comm double,
deptno int)
row format delimited fields terminated by '\t';

(3)查看创建的表
hive (default)> show tables;
OK
tab_name
dept
emp
(4)向外部表中导入数据
导入数据
hive (default)> load data local inpath '/opt/module/datas/dept.txt' into table default.dept;
hive (default)> load data local inpath '/opt/module/datas/emp.txt' into table default.emp;
查询结果
hive (default)> select * from emp;
hive (default)> select * from dept;
(5)查看表格式化数据
hive (default)> desc formatted dept;
Table Type: EXTERNAL_TABLE
4.6.1 分区表基本操作
1)引入分区表(需要根据日期对日志进行管理)
/user/hive/warehouse/log_partition/20180702/20180702.log
/user/hive/warehouse/log_partition/20180703/20180703.log
/user/hive/warehouse/log_partition/20180704/20180704.log
2)创建分区表语法

hive (default)> create table dept_partition(
               deptno int, dname string, loc string
               )
               partitioned by (month string)
               row format delimited fields terminated by '\t';

3)加载数据到分区表中
hive (default)> load data local inpath '/opt/mod/dept.txt' into table default.dept_partition partition(month='201907');
hive (default)> load data local inpath '/opt/mod/dept.txt' into table default.dept_partition partition(month='201908');
hive (default)> load data local inpath '/opt/mod/dept.txt' into table default.dept_partition partition(month='201907');
4)查询分区表中数据
单分区查询
hive (default)> select * from dept_partition where month='201809';
多分区联合查询
hive (default)> select * from dept_partition where month='201809'
union
select * from dept_partition where month='201808'
union
select * from dept_partition where month='201807';

_u3.deptno _u3.dname _u3.loc _u3.month
10 ACCOUNTING NEW YORK 201807
10 ACCOUNTING NEW YORK 201808
10 ACCOUNTING NEW YORK 201809
20 RESEARCH DALLAS 201807
20 RESEARCH DALLAS 201808
20 RESEARCH DALLAS 201809
30 SALES CHICAGO 201807
30 SALES CHICAGO 201808
30 SALES CHICAGO 201809
40 OPERATIONS BOSTON 201807
40 OPERATIONS BOSTON 201808
40 OPERATIONS BOSTON 201809
5)增加分区
创建单个分区
hive (default)> alter table dept_partition add partition(month='201806') ;
同时创建多个分区
hive (default)> alter table dept_partition add partition(month='201805') partition(month='201804');
注:增加多个分区之间用空格" "隔开,删除多个分区用","隔开
6)删除分区
删除单个分区
hive (default)> alter table dept_partition drop partition (month='201804');
同时删除多个分区
hive (default)> alter table dept_partition drop partition (month='201805'), partition (month='201806');
7)查看分区表有多少分区
hive>show partitions dept_partition;
8)查看分区表结构

    hive>desc formatted dept_partition;

# Partition Information          
# col_name              data_type               comment             
month                   string    

4.6.2 分区表注意事项
1)创建二级分区表

hive (default)> create table dept_partition2(
               deptno int, dname string, loc string
               )
               partitioned by (month string, day string)
               row format delimited fields terminated by '\t';

2)正常的加载数据
(1)加载数据到二级分区表中
hive (default)> load data local inpath '/opt/module/datas/dept.txt' into table default.dept_partition2 partition(month='201809', day='13');
(2)查询分区数据
hive (default)> select * from dept_partition2 where month='201809' and day='13';
3)把数据直接上传到分区目录上,让分区表和数据产生关联的两种方式
(1)方式一:上传数据后修复
上传数据
hive (default)> dfs -mkdir -p /user/hive/warehouse/dept_partition2/month=201809/day=12;
hive (default)> dfs -put /opt/module/datas/dept.txt /user/hive/warehouse/dept_partition2/month=201809/day=12;
查询数据(查询不到刚上传的数据)
hive (default)> select * from dept_partition2 where month='201809' and day='12';
执行修复命令
hive>msck repair table dept_partition2;
再次查询数据
hive (default)> select * from dept_partition2 where month='201809' and day='12';
(2)方式二:上传数据后添加分区
上传数据
hive (default)> dfs -mkdir -p /user/hive/warehouse/dept_partition2/month=201809/day=11;
hive (default)> dfs -put /opt/module/datas/dept.txt /user/hive/warehouse/dept_partition2/month=201809/day=11;
执行添加分区
hive (default)> alter table dept_partition2 add partition(month='201809', day='11');
查询数据
hive (default)> select * from dept_partition2 where month='201809' and day='11';
(3)方式三:上传数据后load数据到分区
创建目录
hive (default)> dfs -mkdir -p /user/hive/warehouse/dept_partition2/month=201809/day=10;
上传数据
hive (default)> load data local inpath '/opt/module/datas/dept.txt' into table dept_partition2 partition(month='201809',day='10');
查询数据
hive (default)> select * from dept_partition2 where month='201809' and day='10';
4.7 修改表
4.7.1 重命名表
(1)语法

ALTER TABLE table_name RENAME TO new_table_name

(2)实操案例
hive (default)> alter table dept_partition2 rename to dept_partition3;
4.7.2 增加和删除表分区
详见4.6.1分区表基本操作。同上
4.7.3 增加/修改/替换列信息
1)语法
更新列

ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name column_type [COMMENT col_comment] [FIRST|AFTER column_name]

增加和替换列

ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...) 

注:ADD是代表新增一字段,字段位置在所有列后面(partition列前),REPLACE则是表示替换表中所有字段。
2)实操案例
(1)查询表结构
hive>desc dept_partition;
(2)添加列
hive (default)> alter table dept_partition add columns(deptdesc string);
(3)查询表结构
hive>desc dept_partition;
(4)更新列
hive (default)> alter table dept_partition change column deptdesc desc int;
(5)查询表结构
hive>desc dept_partition;
(6)替换列
hive (default)> alter table dept_partition replace columns(deptno string, dname string, loc string);
(7)查询表结构
hive>desc dept_partition;
4.8 删除表
hive (default)> drop table dept_partition;

下一篇:095-BigData-23Hive分区及DML操作

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容