2021-11-23

图像的几何变换主要包括:平移、缩放、旋转、仿射、透视等等。图像变换是建立在矩阵运算基础上的,通过矩阵运算可以很快的找到不同图像的对应关系。理解变换的原理需要理解变换的构造方法以及矩阵的运算方法。

图像的几何变换主要分为三类:刚性变换、仿射变换和透视变换,如下图:

仿射变换是从一个二维坐标系变换到另一个二维坐标系,属于线性变换。通过已知3对坐标点可以求得变换矩阵。    透视变换是从一个二维坐标系变换到一个三维坐标系,属于非线性变换。通过已知4对坐标点可以求得变换矩阵。

图像的几何变换包含很多变换,其中有一些基本变换,而仿射变换和透视变换就是对这些基本变换进行组合实现的。基本变换具体包括:平移(Shift)、缩放(Scale)、旋转(Rotation)、翻转(Flip)和错切(Shear)。

仿射变换

对于二维坐标系的一个坐标点(x,y),可以使用一个2x2矩阵来调整x,y的值,而通过调整x,y可以实现二维形状的线性变换(旋转,缩放),所以整个转换过程就是对(x,y)调整的过程。仿射变换(Affine Transformation)是指在向量空间中进行一次线性变换(乘以一个矩阵)和一次平移(加上一个向量),变换到另一个向量空间的过程。仿射变换代表的是两幅图之间的映射关系,仿射变换矩阵为2x3的矩阵,如下图中的矩阵M,其中的B起着平移的作用,而A中的对角线决定缩放,反对角线决定旋转或错切。

简短表示:仿射变换是线性变换(旋转和缩放)加平移变换,齐次坐标就是用高一维的空间坐标表示低一维空间的坐标。

所以仿射变换可以由一个矩阵A和一个向量B给出:

原像素点坐标(x,y),经过仿射变换后的点的坐标是T,则矩阵仿射变换基本算法原理:

所以仿射变换是一种二维坐标(x, y)到二维坐标(u, v)的线性变换,其数学表达式如下:

其实到这里还没完,我们知道缩放和旋转通过矩阵乘法来实现,而平移是通过矩阵加法来实现的,为了将这几个操作都通过一个矩阵来实现,所以构造出了上面那个 2x3 的矩阵。但是这个会改变图像的尺寸,比如一个 2x2 的图像,乘以 2x3 的矩阵,会得到 2x3 的图像,所以为了解决这个问题,我们就增加一个维度,也就是构造齐次坐标矩阵。齐次坐标齐次坐标

最终得到的齐次坐标矩阵表示形式为:

仿射变换保持了二维图像的“平直性”和“平行性”:

平直性:直线经仿射变换后还是直线, 圆弧经仿射变换后还是圆弧

平行性:直线之间的相对位置关系保持不变,平行线经仿射变换后依然为平行线,直线上点的位置顺序不会发生变化,向量间夹角可能会发生变化

通过仿射变换将图片中的每个像素点按照一定的规律映射到新的位置,仿射变化需要一个转换矩阵,但是由于仿射变换比较复杂,一般很难直接找到这个矩阵,opencv提供了根据源图像和目标图像上三个对应的点来自动创建变换矩阵,矩阵维度为 2x3。这个函数就是cv2.getAffineTransform(pos1,pos2),其中两个位置就是变换前后的对应位置关系。输出的就是仿射矩阵M,最后这个矩阵会被传给函数 cv2.warpAffine() 来实现仿射变换。变换矩阵的数据类型是 np.float32,函数 cv2.warpAffine() 的第三个参数是输出图像的尺寸(宽,高)。要实现图像旋转,需要通过 cv2.getRotationMatrix2D 来得到二维旋转变换矩阵(2行3列)。cv2.getRotationMatrix2D 三个参数分别为:1.旋转中心,2.旋转角度,3.缩放比例。角度为正,则图像逆时针旋转,旋转后图像可能会超出边界。


参考资料:https://blog.csdn.net/zy0707ok/article/details/81783648

                  图像的仿射变换

                  https://blog.csdn.net/u011681952/article/details/98942207

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容