python数据分析(七)

# -*- coding: utf-8 -*-

from __future__ import division

from numpy.random import randn

import numpy as np

# -*- coding: utf-8 -*-

###通用函数

arr = np.arange(10)

np.sqrt(arr)

np.exp(arr)

x = randn(8)

y = randn(8)

x

y

np.maximum(x, y) # 元素级最大值

arr = randn(7) * 5

print arr

np.modf(arr)

###利用数组进行数据处理

#向量化

points = np.arange(-5, 5, 0.01) # 1000 equally spaced points

xs, ys = np.meshgrid(points, points)

ys

import matplotlib.pyplot as plt

z = np.sqrt(xs ** 2 + ys ** 2)

z

plt.imshow(z, cmap=plt.cm.gray); plt.colorbar()

plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")

plt.draw()

#将条件逻辑表达为数组运算

xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])

yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])

cond = np.array([True, False, True, True, False])

result = [(x if c else y)

for x, y, c in zip(xarr, yarr, cond)]

result

result = np.where(cond, xarr, yarr)

result

arr = randn(4, 4)

arr

np.where(arr > 0, 2, -2)

np.where(arr > 0, 2, arr) # set only positive values to 2

# Not to be executed

result = []

for i in range(n):

if cond1[i] and cond2[i]:

result.append(0)

elif cond1[i]:

result.append(1)

elif cond2[i]:

result.append(2)

else:

result.append(3)

# Not to be executed

np.where(cond1 & cond2, 0,

np.where(cond1, 1,

np.where(cond2, 2, 3)))

# Not to be executed

result = 1 * cond1 + 2 * cond2 + 3 * -(cond1 | cond2)

#数学与统计方法

arr = np.random.randn(5, 4) # 标准正态分布数据

arr.mean()

np.mean(arr)

arr.sum()

arr.mean(axis=1)

arr.sum(0)

arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])

arr.cumsum(0)

arr.cumprod(1)

#用于布尔型数组的方法

arr = randn(100)

(arr > 0).sum() # 正值的数量

bools = np.array([False, False, True, False])

bools.any()

bools.all()

#排序

arr = randn(8)

arr

arr.sort()

arr

arr = randn(5, 3)

arr

arr.sort(1)

arr

large_arr = randn(1000)

large_arr.sort()

large_arr[int(0.05 * len(large_arr))] # 5%分位数

#唯一化以及其他的集合逻辑

names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])

np.unique(names)

ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])

np.unique(ints)

sorted(set(names))

values = np.array([6, 0, 0, 3, 2, 5, 6])

np.in1d(values, [2, 3, 6])

###线性代数

x = np.array([[1., 2., 3.], [4., 5., 6.]])

y = np.array([[6., 23.], [-1, 7], [8, 9]])

x

y

x.dot(y)  # 等价于np.dot(x, y)

np.dot(x, np.ones(3))

np.random.seed(12345)

from numpy.linalg import inv, qr

X = randn(5, 5)

mat = X.T.dot(X)

inv(mat)

mat.dot(inv(mat))

q, r = qr(mat)

r

###随机数生成

samples = np.random.normal(size=(4, 4))

samples

from random import normalvariate

N = 1000000

get_ipython().magic(u'timeit samples = [normalvariate(0, 1) for _ in xrange(N)]')

get_ipython().magic(u'timeit np.random.normal(size=N)')

# 范例:随机漫步

import random

position = 0

walk = [position]

steps = 1000

for i in xrange(steps):

step = 1 if random.randint(0, 1) else -1

position += step

walk.append(position)

np.random.seed(12345)

nsteps = 1000

draws = np.random.randint(0, 2, size=nsteps)

steps = np.where(draws > 0, 1, -1)

walk = steps.cumsum()

walk.min()

walk.max()

(np.abs(walk) >= 10).argmax()

# 一次模拟多个随机漫步

nwalks = 5000

nsteps = 1000

draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1

steps = np.where(draws > 0, 1, -1)

walks = steps.cumsum(1)

walks

walks.max()

walks.min()

hits30 = (np.abs(walks) >= 30).any(1)

hits30

hits30.sum() # 到达30或-30的数量

crossing_times = (np.abs(walks[hits30]) >= 30).argmax(1)

crossing_times.mean()

steps = np.random.normal(loc=0, scale=0.25,

size=(nwalks, nsteps))

###利用NumPy进行历史股价分析

import sys

#读入文件

c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True)

#计算成交量加权平均价格

vwap = np.average(c, weights=v)

print "VWAP =", vwap

#算术平均值函数

print "mean =", np.mean(c)

#时间加权平均价格

t = np.arange(len(c))

print "twap =", np.average(c, weights=t)

#寻找最大值和最小值

h,l=np.loadtxt('data.csv', delimiter=',', usecols=(4,5), unpack=True)

print "highest =", np.max(h)

print "lowest =", np.min(l)

print (np.max(h) + np.min(l)) /2

print "Spread high price", np.ptp(h)

print "Spread low price", np.ptp(l)

#统计分析

c=np.loadtxt('data.csv', delimiter=',', usecols=(6,), unpack=True)

print "median =", np.median(c)

sorted = np.msort(c)

print "sorted =", sorted

N = len(c)

print "middle =", sorted[(N - 1)/2]

print "average middle =", (sorted[N /2] + sorted[(N - 1) / 2]) / 2

print "variance =", np.var(c)

print "variance from definition =", np.mean((c - c.mean())**2)

#股票收益率

c=np.loadtxt('data.csv', delimiter=',', usecols=(6,), unpack=True)

returns = np.diff( c ) / c[ : -1]

print "Standard deviation =", np.std(returns)

logreturns = np.diff( np.log(c) )

posretindices = np.where(returns > 0)

print "Indices with positive returns", posretindices

annual_volatility = np.std(logreturns)/np.mean(logreturns)

annual_volatility = annual_volatility / np.sqrt(1./252.)

print "Annual volatility", annual_volatility

print "Monthly volatility", annual_volatility * np.sqrt(1./12.)

#日期分析

from datetime import datetime

# Monday 0

# Tuesday 1

# Wednesday 2

# Thursday 3

# Friday 4

# Saturday 5

# Sunday 6

def datestr2num(s):

return datetime.strptime(s, "%d-%m-%Y").date().weekday()

dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6),

converters={1: datestr2num}, unpack=True)

print "Dates =", dates

averages = np.zeros(5)

for i in range(5):

indices = np.where(dates == i)

prices = np.take(close, indices)

avg = np.mean(prices)

print "Day", i, "prices", prices, "Average", avg

averages[i] = avg

top = np.max(averages)

print "Highest average", top

print "Top day of the week", np.argmax(averages)

bottom = np.min(averages)

print "Lowest average", bottom

print "Bottom day of the week", np.argmin(averages)

#周汇总

def datestr2num(s):

return datetime.strptime(s, "%d-%m-%Y").date().weekday()

dates, open, high, low, close=np.loadtxt('data.csv', delimiter=',',

usecols=(1, 3, 4, 5, 6), converters={1: datestr2num}, unpack=True)

close = close[:16]

dates = dates[:16]

# get first Monday

first_monday = np.ravel(np.where(dates == 0))[0]

print "The first Monday index is", first_monday

# get last Friday

last_friday = np.ravel(np.where(dates == 4))[-1]

print "The last Friday index is", last_friday

weeks_indices = np.arange(first_monday, last_friday + 1)

print "Weeks indices initial", weeks_indices

weeks_indices = np.split(weeks_indices, 3)

print "Weeks indices after split", weeks_indices

def summarize(a, o, h, l, c):

monday_open = o[a[0]]

week_high = np.max( np.take(h, a) )

week_low = np.min( np.take(l, a) )

friday_close = c[a[-1]]

return("APPL", monday_open, week_high, week_low, friday_close)

weeksummary = np.apply_along_axis(summarize, 1, weeks_indices, open, high, low, close)

print "Week summary", weeksummary

np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s")

#真实波动幅度均值

h, l, c = np.loadtxt('data.csv', delimiter=',', usecols=(4, 5, 6), unpack=True)

N =20

h = h[-N:]

l = l[-N:]

print "len(h)", len(h), "len(l)", len(l)

print "Close", c

previousclose = c[-N -1: -1]

print "len(previousclose)", len(previousclose)

print "Previous close", previousclose

truerange = np.maximum(h - l, h - previousclose, previousclose - l)

print "True range", truerange

atr = np.zeros(N)

atr[0] = np.mean(truerange)

for i in range(1, N):

atr[i] = (N - 1) * atr[i - 1] + truerange[i]

atr[i] /= N

print "ATR", atr

#简单移动平均线

from matplotlib.pyplot import plot

from matplotlib.pyplot import show

N = 5

weights = np.ones(N) / N

print "Weights", weights

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,), unpack=True)

sma = np.convolve(weights, c)[N-1:-N+1]

t = np.arange(N - 1, len(c))

plot(t, c[N-1:], lw=1.0)

plot(t, sma, lw=2.0)

show()

#指数移动平均线

x = np.arange(5)

print "Exp", np.exp(x)

print "Linspace", np.linspace(-1, 0, 5)

N = 5

weights = np.exp(np.linspace(-1., 0., N))

weights /= weights.sum()

print "Weights", weights

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,), unpack=True)

ema = np.convolve(weights, c)[N-1:-N+1]

t = np.arange(N - 1, len(c))

plot(t, c[N-1:], lw=1.0)

plot(t, ema, lw=2.0)

show()

#布林带

N = 5

weights = np.ones(N) / N

print "Weights", weights

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,), unpack=True)

sma = np.convolve(weights, c)[N-1:-N+1]

deviation = []

C = len(c)

for i in range(N - 1, C):

if i + N < C:

dev = c[i: i + N]

else:

dev = c[-N:]

averages = np.zeros(N)

averages.fill(sma[i - N - 1])

dev = dev - averages

dev = dev ** 2

dev = np.sqrt(np.mean(dev))

deviation.append(dev)

deviation = 2 * np.array(deviation)

print len(deviation), len(sma)

upperBB = sma + deviation

lowerBB = sma - deviation

c_slice = c[N-1:]

between_bands = np.where((c_slice < upperBB) & (c_slice > lowerBB))

print lowerBB[between_bands]

print c[between_bands]

print upperBB[between_bands]

between_bands = len(np.ravel(between_bands))

print "Ratio between bands", float(between_bands)/len(c_slice)

t = np.arange(N - 1, C)

plot(t, c_slice, lw=1.0)

plot(t, sma, lw=2.0)

plot(t, upperBB, lw=3.0)

plot(t, lowerBB, lw=4.0)

show()

#线性模型

N = int(sys.argv[1])

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,), unpack=True)

b = c[-N:]

b = b[::-1]

print "b", b

A = np.zeros((N, N), float)

print "Zeros N by N", A

for i in range(N):

A[i, ] = c[-N - 1 - i: - 1 - i]

print "A", A

(x, residuals, rank, s) = np.linalg.lstsq(A, b)

print x, residuals, rank, s

print np.dot(b, x)

#趋势线

def fit_line(t, y):

A = np.vstack([t, np.ones_like(t)]).T

return np.linalg.lstsq(A, y)[0]

h, l, c = np.loadtxt('data.csv', delimiter=',', usecols=(4, 5, 6), unpack=True)

pivots = (h + l + c) / 3

print "Pivots", pivots

t = np.arange(len(c))

sa, sb = fit_line(t, pivots - (h - l))

ra, rb = fit_line(t, pivots + (h - l))

support = sa * t + sb

resistance = ra * t + rb

condition = (c > support) & (c < resistance)

print "Condition", condition

between_bands = np.where(condition)

print support[between_bands]

print c[between_bands]

print resistance[between_bands]

between_bands = len(np.ravel(between_bands))

print "Number points between bands", between_bands

print "Ratio between bands", float(between_bands)/len(c)

print "Tomorrows support", sa * (t[-1] + 1) + sb

print "Tomorrows resistance", ra * (t[-1] + 1) + rb

a1 = c[c > support]

a2 = c[c < resistance]

print "Number of points between bands 2nd approach" ,len(np.intersect1d(a1, a2))

plot(t, c)

plot(t, support)

plot(t, resistance)

show()

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容