CS231n___Image classification

First, let’s load the CIFAR-10 data into memory as 4 arrays: the training data/labels and the test data/labels.

Nearest Neighbor Classifier

  1. The nearest neighbor classifier will take a test image, compare it to ‘every single one’ of the training images, and predict the label of the closest training image.
  2. L1 distance and L2 distance

k - Nearest Neighbor Classifier

  1. 和 Nearest Neighbor Classifier 区别是什么:The idea is very simple: instead of finding the 'single closest image' in the training set, we will find the 'top k closest images', and have them vote on the label of the test image. In particular, when k = 1, we recover the Nearest Neighbor classifier. Intuitively, higher values of k have a smoothing effect that makes the classifier more resistant to outliers
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容