负二项分布(Negative binomial distribution)是统计学上一种描述在一系列独立同分布的伯努利试验中,成功次数达到指定次数(记为r)时失败次数的离散概率分布。比如,如果我们定义掷骰子随机变量x值为x=1时成功,所有x≠1为失败,这时我们反复掷骰子直到1出现3次(成功次数r=3),此时非1数字出现次数的概率分布即为负二项分布。
帕斯卡分布(Pascal distribution,来自布莱兹·帕斯卡 (Blaise Pascal))和波利亚分布(Polya distribution,又称罐子模型,来自乔治·波利亚 (George Pólya))均是负二项分布的特例。在工程、气候等领域中经常用“负二项分布”或“帕斯卡分布”来描述变量r为整数的情况,而使用“波利亚分布”来描述r取到实数值R的情况。
对于“相关的离散事件”("associated discrete events")的发生,例如龙卷风爆发,相比于泊松分布,波利亚分布由于允许其平均值和方差不同,而能够给出更精确的模型。在流行病学中,它已被用于模拟传染病的疾病传播,其中可能的继发感染数量可能因个体和环境而异[1]。 更一般地说,由于正协方差项,事件具有正相关的事件导致比独立事件更大的方差可能是合适的。
“负二项分布”与“二项分布”的区别在于:“二项分布”是固定试验总次数N的独立试验中,成功次数k的分布;而“负二项分布”是所有到r次成功时即终止的独立试验中,失败次数k的分布。