最近有一个分析任务,需要做转录因子调控网络分析,需要安装pySCENIC这个工具,颇费周折,下面是我的成功安装记录,直接拿去实践。
1.系统环境
# system
Darwin MacBook-Pro.local 24.5.0 Darwin Kernel Version 24.5.0: Tue Apr 22 19:48:46 PDT 2025; root:xnu-11417.121.6~2/RELEASE_ARM64_T8103 arm64
# conda
conda --version
conda 24.7.1
2.安装
conda create -n pyscenic python=3.8
conda activate pyscenic
conda install numpy=1.19
conda install pandas=1.3
pip install numba==0.56.4
pip install pyscenic==0.12.1
python -c "import numpy; print(numpy.__version__)"
python -c "import pandas; print(pandas.__version__)"
python -c "import pyscenic; print(pyscenic.__version__)
3.测试
pyscenic --help
zsh: correct 'pyscenic' to 'pySCENIC' [nyae]? n
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
usage: pyscenic [-h] {grn,add_cor,ctx,aucell} ...
Single-Cell rEgulatory Network Inference and Clustering (0.12.1)
positional arguments:
{grn,add_cor,ctx,aucell}
sub-command help
grn Derive co-expression modules from expression matrix.
add_cor [Optional] Add Pearson correlations based on TF-gene expression to the network
adjacencies output from the GRN step, and output these to a new adjacencies
file. This will normally be done during the "ctx" step.
ctx Find enriched motifs for a gene signature and optionally prune targets from
this signature based on cis-regulatory cues.
aucell Quantify activity of gene signatures across single cells.
optional arguments:
-h, --help show this help message and exit
Arguments can be read from file using a @args.txt construct. For more information on loom file format
see http://loompy.org . For more information on gmt file format see
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats .