关于tf.random_normal方法中seed的作用

今天跟着书学习 TF 的时候,看到代码示例里面有这么一段代码:

import tensorflow as tf
...
w1 = tf.random_normal([2,3], stddev=1, seed=1)
w2 = tf.random_normal([3,1], stddev=1, seed=1)
...

我们知道 tf.random_normal 方法是生成随机的矩阵参数,如上例中就是生成一个3×1的矩阵,stddev 参数是控制方差,这些都好理解,就是看到这个 seed 参数的时候有点懵,下面截取的是官方 API 的解释:

seed: A Python integer. Used to create a random seed for the distribution. See tf.set_random_seed for behavior.

我查阅了一些博客,基本上都是对这段官文的翻译,请原谅我看了翻译依然没搞懂。再回到书上,书上给出的解释简直“言简意赅”,如下:

保证每次运行时的参数不变

虽然没搞明白如何不变,但起码知道了作用。但不搞明白总觉得有点不舒服,于是开始实验。

首先把 seed 设置为 1

import tensorflow as tf
// 把 seed 设置为 1
w1 = tf.random_normal([2,3], stddev=1, seed=1)
w2 = tf.random_normal([3,1], stddev=1, seed=1)

sess =  tf.Session()
sess.run(w1.initializer)
sess.run(w2.initializer)
print(sess.run(w1))
print(sess.run(w2))
sess.close()

我们看到输出结果

[[-0.8113182   1.4845988   0.06532937]
 [-2.4427042   0.0992484   0.5912243 ]]
[[-0.8113182 ]
 [ 1.4845988 ]
 [ 0.06532937]]

然后把 seed 设置为 2,代码不贴了,直接看输出结果

[[-0.85811085 -0.19662298  0.13895045]
 [-1.2212768  -0.40341285 -1.1454041 ]]
[[-0.85811085]
 [-0.19662298]
 [ 0.13895045]]

最后把 w1seed 设回 1w2 保持不变,结果如下

[[-0.8113182   1.4845988   0.06532937]
 [-2.4427042   0.0992484   0.5912243 ]]
[[-0.85811085]
 [-0.19662298]
 [ 0.13895045]]

晚上,我换了一台电脑重复以上的实验,发现 seed 在等于 12 的时候,数据是完全一样的,所以我推断的结论是:seed 其实是一些预设的数据。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 229,698评论 6 539
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,202评论 3 426
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 177,742评论 0 382
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,580评论 1 316
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,297评论 6 410
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,688评论 1 327
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,693评论 3 444
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,875评论 0 289
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,438评论 1 335
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,183评论 3 356
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,384评论 1 372
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,931评论 5 363
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,612评论 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,022评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,297评论 1 292
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,093评论 3 397
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,330评论 2 377

推荐阅读更多精彩内容