[Python] 一阶马尔科夫链生成随机DNA序列

1. 原理

  对于DNA序列,一阶马尔科夫链可以理解为当前碱基的类型仅取决于上一位碱基类型。如图1所示,一条序列的开端(由B开始)可能是A、T、G、C四种碱基(且可能性相同,均为0.25),若序列的某一位是A,则下一位碱基是A、T、G、C的概率分别为0.25、0.20、0.20、0.20,下一位无碱基(即序列结束,状态为E)的概率为0.15。

图1 DNA序列的一阶马尔科夫链

2. 代码实现

  以下代码运行于Jupyter Notebook (Python 3.7);代码功能是随机生成一定数量的DNA序列,统计序列长度并绘制分布图。若希望显示随机生成的序列,将代码# print(''.join(Seq))前的#删除即可。

import numpy
import random
import seaborn as sns
import matplotlib.pyplot as plt

# 状态空间
states = ["A","G","C","T","E"]

# 可能的事件序列
transitionName = [["AA","AG","AC","AT","AE"],
                  ["GA","GG","GC","GT","GE"],
                  ["CA","CG","CC","CT","CE"],
                  ["TA","TG","TC","TT","TE"],]

# 概率矩阵(转移矩阵)
transitionMatrix = [[0.25,0.20,0.20,0.20,0.15],
                    [0.20,0.25,0.20,0.20,0.15],
                    [0.20,0.20,0.25,0.20,0.15],
                    [0.20,0.20,0.20,0.25,0.15]]

def RandomDNAs(Num):
    max_len = 0
    i = 0
    Seq = [] #创建列表(Seq)用于添加碱基,以组成DNA序列
    Len = [] #创建列表(Len)用于记录每条生成序列的长度
    while i != Num:
        Base = ["A","G","C","T"]
        START = random.choice(Base) #随机从碱基中选择一个作为序列的起始碱基
        Seq.append(START) #将起始碱基添加至Seq中
        while START != "E":
            if START == "A":
                change = numpy.random.choice(transitionName[0],p=transitionMatrix[0])
                #以transitionMatrix矩阵第一行的概率分布随机抽取transitionName第一行包含的事件
                if change == "AA":
                    START = "A" #如果转移状态是AA(即A碱基接下来的碱基是A,则将起始碱基设为A)
                elif change == "AG":
                    START = "G"
                elif change == "AC":
                    START = "C"
                elif change == "AT":
                    START = "T"
                elif change == "AE":
                    START = "E"
            elif START == "G":
                change = numpy.random.choice(transitionName[1],p=transitionMatrix[1])
                if change == "GA":
                    START = "A"
                elif change == "GG":
                    START = "G"
                elif change == "GC":
                    START = "C"
                elif change == "GT":
                    START = "T"
                elif change == "GE":
                    START = "E"
            elif START == "C":
                change = numpy.random.choice(transitionName[2],p=transitionMatrix[2])
                if change == "CA":
                    START = "A"
                elif change == "CG":
                    START = "G"
                elif change == "CC":
                    START = "C"
                elif change == "CT":
                    START = "T"
                elif change == "CE":
                    START = "E"
            elif START == "T":
                change = numpy.random.choice(transitionName[3],p=transitionMatrix[3])
                if change == "TA":
                    START = "A"
                elif change == "TG":
                    START = "G"
                elif change == "TC":
                    START = "C"
                elif change == "TT":
                    START = "T"
                elif change == "TE":
                    START = "E"
            if START != "E":
                Seq.append(START) #如果状态转移后不为End(E),则将转移后的碱基加到Seq序列中
        i += 1
        Len.append(len(Seq))
        if len(Seq) > max_len:
            max_len = len(Seq)
        #print(''.join(Seq))
        Seq.clear()
    plt.hist(numpy.array(Len), bins=max_len, edgecolor="white")
    # 显示横轴标签
    plt.xlabel("DNA Sequence Length")
    # 显示纵轴标签
    plt.ylabel("Frequency")
    # 显示图标题
    plt.title("Histogram of frequency distribution of DNA sequence length")
    plt.show()
    print("DNA序列的最大长度为:",max_len)
    print("DNA序列长度的众数为:",max(Len, key=Len.count))

%matplotlib notebook #若未使用Jupyter Notebook,此句不需要
RandomDNAs(1000) #1000表示随机生成1000条序列

3. 运行结果

  从以下4个序列长度分布统计可以看到,随着随机生成的序列数量增多,序列长度分布愈发集中,且长度为1bp的序列占比最多且逐渐增加。

图2 10,000条DNA序列的序列长度分布统计

10,000条DNA序列的序列中
DNA序列的最大长度为: 65
DNA序列长度的众数为: 1

图3 100,000条DNA序列的序列长度分布统计

100,000条DNA序列的序列中
DNA序列的最大长度为: 71
DNA序列长度的众数为: 1

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353

推荐阅读更多精彩内容