多线程GCD

基本概念

GCD

  • 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器”
  • 纯C语言,提供了非常多强大的函数

GCD的优势

  • GCD是苹果公司为多核的并行运算提出的解决方案
  • GCD会自动利用更多的CPU内核(比如双核、四核)
  • GCD会自动管理线程的生命周期(创建线程、调度任务、销毁线程)
  • 程序员只需要告诉GCD想要执行什么任务,不需要编写任何线程管理代码

任务和队列

  • GCD中有2个核心概念

    • 任务:执行什么操作
    • 队列:用来存放任务
  • GCD的使用就2个步骤

    • 定制任务
    • 确定想做的事情
  • 将任务添加到队列中

    • GCD会自动将队列中的任务取出,放到对应的线程中执行
    • 任务的取出遵循队列的FIFO原则:先进先出,后进后出

执行任务

执行任务

  • GCD中有2个用来执行任务的常用函数
    • 用同步的方式执行任务
dispatch_sync(dispatch_queue_t queue, dispatch_block_t block);
queue:队列
block:任务
  • 用异步的方式执行任务
dispatch_async(dispatch_queue_t queue, dispatch_block_t block);
  • 同步和异步的区别

    • 同步:只能在当前线程中执行任务,不具备开启新线程的能力
    • 异步:可以在新的线程中执行任务,具备开启新线程的能力
  • GCD中还有个用来执行任务的函数:

dispatch_barrier_async(dispatch_queue_t queue, dispatch_block_t block);
  • 在前面的任务执行结束后它才执行,而且它后面的任务等它执行完成之后才会执行
  • 这个queue不能是全局的并发队列

队列的类型

  • GCD的队列可以分为2大类型
    • 并发队列(Concurrent Dispatch Queue)

      • 可以让多个任务并发(同时)执行(自动开启多个线程同时执行任务)
      • 并发功能只有在异步(dispatch_async)函数下才有效
    • 串行队列(Serial Dispatch Queue)

      • 让任务一个接着一个地执行(一个任务执行完毕后,再执行下一个任务)

容易混淆的术语

  • 有4个术语比较容易混淆:同步、异步、并发、串行
    • 同步和异步主要影响:能不能开启新的线程

      • 同步:只是在当前线程中执行任务,不具备开启新线程的能力
      • 异步:可以在新的线程中执行任务,具备开启新线程的能力
    • 并发和串行主要影响:任务的执行方式

      • 并发:允许多个任务并发(同时)执行
      • 串行:一个任务执行完毕后,再执行下一个任务

创建队列

并发队列

  • 使用dispatch_queue_create函数创建队列
dispatch_queue_t
dispatch_queue_create(const char *label, // 队列名称 
dispatch_queue_attr_t attr); // 队列的类型
  • 创建并发队列
dispatch_queue_t queue = dispatch_queue_create("com.520it.queue", DISPATCH_QUEUE_CONCURRENT);
  • GCD默认已经提供了全局的并发队列,供整个应用使用,可以无需手动创建
    • 使用dispatch_get_global_queue函数获得全局的并发队列
dispatch_queue_t dispatch_get_global_queue(
dispatch_queue_priority_t priority, // 队列的优先级
unsigned long flags); // 此参数暂时无用,用0即可
  • 获得全局并发队列
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
  • 全局并发队列的优先级
#define DISPATCH_QUEUE_PRIORITY_HIGH 2 // 高
#define DISPATCH_QUEUE_PRIORITY_DEFAULT 0 // 默认(中)
#define DISPATCH_QUEUE_PRIORITY_LOW (-2) // 低
#define DISPATCH_QUEUE_PRIORITY_BACKGROUND INT16_MIN // 后台

串行队列

  • GCD中获得串行有2种途径
    • 使用dispatch_queue_create函数创建串行队列
// 创建串行队列(队列类型传递NULL或者DISPATCH_QUEUE_SERIAL)
dispatch_queue_t queue = dispatch_queue_create("com.520it.queue", NULL); 
  • 使用主队列(跟主线程相关联的队列)
    • 主队列是GCD自带的一种特殊的串行队列
    • 放在主队列中的任务,都会放到主线程中执行
    • 使用dispatch_get_main_queue()获得主队列
dispatch_queue_t queue = dispatch_get_main_queue();

各种队列的执行效果

各种队列的执行效果.png
  • 注意:使用sync函数往当前串行队列中添加任务,会卡住当前的串行队列

线程间通信

线程间通信示例

  • 从子线程回到主线程
dispatch_async(
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    // 执行耗时的异步操作...
      dispatch_async(dispatch_get_main_queue(), ^{
        // 回到主线程,执行UI刷新操作
        });
});

其他用法

延时执行

  • iOS常见的延时执行
    • 调用NSObject的方法
[self performSelector:@selector(run) withObject:nil afterDelay:2.0];
// 2秒后再调用self的run方法
  • 使用GCD函数
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
    // 2秒后执行这里的代码...
});
  • 使用NSTimer
[NSTimer scheduledTimerWithTimeInterval:2.0 target:self selector:@selector(test) userInfo:nil repeats:NO];

一次性代码

  • 使用dispatch_once函数能保证某段代码在程序运行过程中只被执行1次
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
    // 只执行1次的代码(这里面默认是线程安全的)
});

快速迭代

  • 使用dispatch_apply函数能进行快速迭代遍历
dispatch_apply(10, dispatch_get_global_queue(0, 0), ^(size_t index){
    // 执行10次代码,index顺序不确定
});

队列组

  • 有这么1种需求

    • 首先:分别异步执行2个耗时的操作
    • 其次:等2个异步操作都执行完毕后,再回到主线程执行操作
  • 如果想要快速高效地实现上述需求,可以考虑用队列组

dispatch_group_t group =  dispatch_group_create();
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    // 执行1个耗时的异步操作
});
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    // 执行1个耗时的异步操作
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
    // 等前面的异步操作都执行完毕后,回到主线程...
});

单例模式

  • 单例模式的作用

    • 可以保证在程序运行过程,一个类只有一个实例,而且该实例易于供外界访问
    • 从而方便地控制了实例个数,并节约系统资源
  • 单例模式的使用场合

    • 在整个应用程序中,共享一份资源(这份资源只需要创建初始化1次)
  • ARC中,单例模式的实现

    • 在.m中保留一个全局的static的实例
static id _instance;
  • 重写allocWithZone:方法,在这里创建唯一的实例(注意线程安全)
    + (instancetype)allocWithZone:(struct _NSZone *)zone
    {
        static dispatch_once_t onceToken;
        dispatch_once(&onceToken, ^{
            _instance = [super allocWithZone:zone];
        });
        return _instance;
    }
  • 提供1个类方法让外界访问唯一的实例
  + (instancetype)sharedInstance
  {
      static dispatch_once_t onceToken;
      dispatch_once(&onceToken, ^{
          _instance = [[self alloc] init];
      });
      return _instance;
  }
  • 实现copyWithZone:方法
  - (id)copyWithZone:(struct _NSZone *)zone
  {
      return _instance;
  }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容