菜鸟实习日记~day5(VGG+video feature flow PPT)

生活:

今天累成狗了......柱子哥让我做关于video feature flow主线的PPT,然后在组会上讲...我一个刚来不到1个月的实习生,这简直太看得起我了。。。


中午吃的那个炸鲜奶挺好吃的~

科研:

1.VGG:

详解CNN五大经典模型:Lenet,Alexnet,Googlenet,VGG,DRL

基于CNN经典的五大模型在上面的链接里都简单介绍啦,下面主要说VGG和Alexnet:

VGG相对来说,有更准确的估值,更节省空间。

先解释几个仍然不清楚的概念:

@1:filter(过滤器)——相当于一套卷积参数,每个Filter都可以把原始输入图像卷积得到一个Feature Map,三个Filter就可以得到三个Feature Map.

@2:channel(通道)——我们可以把Feature Map可以看做是通过卷积变换提取到的图像特征,三个Filter就对原始图像提取出三组不同的特征,也就是得到了三个Feature Map,也称做三个通道(channel)

VGG结构:

VGG结构图

与AlexNet相同点

1.最后三层FC层(Fully Connected全连接层)结构相同。

2.都分成五层(组)。

3.每层和每层之间用pooling层分开。

不同点

1.AlexNet每层仅仅含有一个Convolution层,filter的大小7x7(很大);而VGG每层含有多个(2~4)个Convolution层,filter的大小是3x3(最小)。很明显,VGG是在模仿Alex的结构,然而它通过降低filter的大小,增加层数来达到同样的效果。我提出我的一个对这种模仿的一种我自己的理解。因为不是论文中讲到,仅仅是我自己的理解,仅供大家参考。

作者在论文中说了一句

"This can be seen as imposing a regularisation on the 7 × 7 conv. filters, forcing them to have a decomposition through the 3 × 3 filters"

他说7x7 filter可以被分解成若干个3x3的filter的叠加。

类比一下n维空间的向量x,x的正交分解

x = x1(1, 0, 0, ....) + x2(0, 1, 0, ...) + x3(0, 0, 1,...) + ... + xn(0, 0, 0, ..., 1)

每一组的每一层的filter被类比成n维欧几里得空间的基底。

若VGG的一组含有3层3x3的filter,则我们则假设一个7x7的filter可以被分解成3种“正交”的3x3的filter。

作者原文:First, we incorporate three non-linearrectification layers instead of a single one, which makes the decision function more discriminative.Second, we decrease the number of parameters: assuming that both the input and the output of athree-layer 3 × 3 convolution stack has C channels, the stack is parametrised by 3  32C^2 = 27C^2weights; at the same time, a single 7 × 7 conv. layer would require 72C^2 = 49C^2

2.AlexNet的Channel明显小于VGG。猜测VGG的之所以能够达到更高的精准性,源自于更多的Channel数。而由于filter size的减小,channel可以大幅度增加,更多的信息可以被提取。

作者:voidrank

链接:http://www.jianshu.com/p/9c6d90e4f20e


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容