Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empty list if no palindromic permutation could be form.
For example:
Given s = "aabb", return ["abba", "baab"].
Given s = "abc", return [].
总结见:http://www.jianshu.com/p/883fdda93a66
Solution:Backtracking 排列问题
思路: 预处理 + 排列问题47 Permutations II
http://www.jianshu.com/p/d85bc263b282
Time Complexity: O(N!) Space Complexity: O(N)
Solution Code:
class Solution {
public List<String> generatePalindromes(String s) {
List<String> result = new ArrayList<>();
List<Character> list = new ArrayList<>();
int odd = 0;
String mid = "";
Map<Character, Integer> map = new HashMap<>();
// step 1. build character count map and count odds
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
map.put(c, map.containsKey(c) ? map.get(c) + 1 : 1);
odd += map.get(c) % 2 != 0 ? 1 : -1;
}
// cannot form any palindromic string
if (odd > 1) return result;
// step 2. add half count of each character to list
for (Map.Entry<Character, Integer> entry : map.entrySet()) {
char key = entry.getKey();
int val = entry.getValue();
if (val % 2 != 0) mid += key;
for (int i = 0; i < val / 2; i++) list.add(key);
}
// step 3. generate all the permutations
getPerm(list, mid, new boolean[list.size()], new StringBuilder(), result);
return result;
}
// generate all unique permutation from list, sb: cur_res
void getPerm(List<Character> list, String mid, boolean[] used, StringBuilder sb, List<String> result) {
if (sb.length() == list.size()) {
// form the palindromic string
result.add(sb.toString() + mid + sb.reverse().toString());
sb.reverse();
return;
}
for (int i = 0; i < list.size(); i++) {
// avoid duplication
if (i > 0 && list.get(i) == list.get(i - 1) && !used[i - 1]) continue;
if (!used[i]) {
used[i] = true; sb.append(list.get(i));
// recursion
getPerm(list, mid, used, sb, result);
// backtracking
used[i] = false; sb.deleteCharAt(sb.length() - 1);
}
}
}
}