数字信号处理中的各种频率

在学习数字信号处理时,很多种频率很容易搞混淆,有模拟/数字/频率/角频率等等,也不是特别清楚不同频率之间的关系,希望这篇文件可以为各种频率来个了结.

4种频率及其数量关系

实际物理频率表示物理信号的真实频率; fs为采样频率,表示ADC采集物理信号的频率,由奈奎斯特采样定理可以知道,fs必须≥信号最高频率的2倍才不会发生信号混叠,因此fs能采样到的信号最高频率为fs/2。
角频率Ω是物理频率的2π倍, 这个也称模拟频率。
归一化频率是将物理频率按fs归一化之后的结果,最高的信号频率为fs/2对应归一化频率0.5(ω=π),这也就是为什么在matlab的fdatool工具中归一化频率为什么最大只到0.5的原因。归一化频率中不含fs的信息.
圆周频率是归一化频率的2*pi倍,这个也称数字频率ω

有关FFT频率与实际物理频率的分析

做n个点的FFT,表示在时域上对原来的信号取了n个点来做频谱分析,n点FFT变换的结果仍为n个点。
换句话说,就是将2π数字频率ω分成n份,而整个数字频率ω的范围覆盖了从0-2π*fs的模拟频率范围。这里的fs是采样频率。而我们通常只关心0-π中的频谱,因为根据奈科斯特定律,只有f=fs/2范围内的信号才是被采样到的有效信号。那么,在w的范围内,得到的频谱肯定是关于n/2对称的。
举例说,如果做了16个点的FFT分析,你原来的模拟信号的最高频率f=32kHz,采样频率是64kHz,n的范围是0,1,2...15。这时,64kHz的模拟频率被分成了16分,每一份是4kHz,这个叫频率分辨率。那么在横坐标中,n=1时对应的f是4kHz, n=2对应的是8kHz, n=15时对应的是60kHz,你的频谱是关于n=8对称的。你只需要关心n=0到7以内的频谱就足够了,因为,原来信号的最高模拟频率是32kHz。
这里可以有两个结论:

  1. 必须知道原来信号的采样频率fs是多少,才可以知道每个n对应的实际频率是多少,第k个点的实际频率的计算为f(k)=k*(fs/n)
  2. 你64kHz做了16个点FFT之后,因为频率分辨率是4kHz,如果原来的信号在5kHz或者63kHz有分量,你在频谱上是看不见的,这就表示你越想频谱画得逼真,就必须取越多的点数来做FFT,n就越大,你在时域上就必须取更长的信号样本来做分析。但是无论如何,由于离散采样的原理,你不可能完全准确地画出原来连续时间信号的真实频谱,只能无限接近(就是n无限大的时候),这个就叫做频率泄露。在采样频率fs不变得情况下,频率泄漏可以通过取更多的点来改善,也可以通过做FFT前加窗来改善,这就是另外一个话题了。

为什么抽取/内插看起来对频谱有影响?

在数字信号处理时,经常需要对数据进行抽取或者内插处理.抽取之后的频率展宽了n倍,内插之后的频率压缩了n倍,从而需要在变采样率之后添加抗混叠滤波器.但是实际上信号的频率在抽取/内插的前后并没有发生变化.这里的核心原因是:归一化频率失去了采样率fs信息.
抽取和内插的实质是采样率fs的变化

image.png
image.png

举个例子:
我们设定fs=30.72MHz,使用3个cw信号的合成信号代表一个BW=8MHz的宽带信号,使用实际频率来表示信号,看到BW没有变化,使用数字频率w来表示信号,信号的BW似乎被压缩了.

Q: 为什么要在归一化频率下来分析信号?

image.png
归一化频率
clear all;
close all;

fs = 30.72e6;
ts = 1/fs;
nFFT=4096;
%nFFT=32768;
t=0:ts:(nFFT-1)*ts;

d0=100*sin(2*pi*10e6*t);
d1=50*cos(2*pi*5e6*t);
d2=10*cos(2*pi*2e6*t);
dSum=d0+d1+d2;

dFFT = abs(fftshift(fft(dSum,nFFT)))/(nFFT/2);
%dFFT = abs(fft(dSum,nFFT))/(nFFT/2);
fAxis = (-1/2*nFFT:(1/2*nFFT-1))/nFFT*fs;
figure(1)
subplot(2,1,1)
plot(fAxis,dFFT)
title('original signal')
subplot(2,1,2)
dSumI= zeros(1,2*nFFT);
for k =1:nFFT
    dSumI(2*k) = dSum(k);
end
dFFTI = abs(fftshift(fft(dSumI,2*nFFT)))/(nFFT);
fAxisI = (-nFFT:(nFFT-1))/(2*nFFT)*fs*2;  %fs double
plot(fAxisI,dFFTI)
title('interpolated signal')
figure(2)

subplot(2,1,1)
wAxis = 2*pi*(-1/2*nFFT:(1/2*nFFT-1))/(nFFT);
plot(wAxis,dFFT)
set(gca,'XTick',-2*pi:pi/2:2*pi)  
title('original signal normalize')
subplot(2,1,2)
wAxisI = 2*pi*(-nFFT:(nFFT-1))/(2*nFFT);
plot(wAxisI,dFFTI)
set(gca,'XTick',-2*pi:pi/2:2*pi) 
title('interpolated signal normalize')

参考:

  1. 数字信号处理中的归一化频率
  2. 阿英讲频率f,角频率Ω和数字频率w的物理含义--附MATLAB仿真
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容