Analyzing product sentiment

In this module ,we focused on classfiiers,applying them to analyzing product sentiment,and understanding the types of errors a classifier makes. We also built an exciting Ipython notebook for analyzing the sentiment of real product reviews.
In this assignment, we are going to explore this application further, training a sentiment analysis model using a set of key polarizing words, verify the weights learned to each of these words, and compare the results of this simpler classifier with those of the one using all of the words. These technniques will be a core component in your capstone project.
Follow the rest of the instructions on this page to complete your program. When you are done, insdead of uploading your code, you will answer a series of quiz quesions (see the quiz after this reading) to document your completion of this assignment. The instructions will indicate what data to collect for answering the quiz.

Learning outcomes

  • Execute sentiment analysis code with the IPython notebook
  • Load and transform real,text data
  • Using the .apply() function to create new columns(features) for our model
  • Compare results of two models,one using all words and the other using a subset of the words
  • Compare learned models with majority class prediction
  • Examine the predicions of a sentiment model
  • Build a sentiment analysis model using a classifier

Resources oyou will need

You will need to install the software tools or use the free Amazon EC2 machine . Instructions for both options are provided in the reading for Module 1.

Download the data and starter code

Before getting started ,you will need to download the dataset and the starter IPython notebook that we used in the module

  • Download the product review dataset here in SFrame format

What you will do

Now you are ready! We are going do four tasks in this assignment.There are several results you need to gather along the way to enter into the quiz afer this reading.
In the Ipython notebook above,we used the word counts for all words in the reviews to train the sentiment classifier model.
Now ,we are going to follow a similar path, but only use this subset of the words:

Often,ML practitioners will throw out words they consider "unimportant" before training their model. This procedure can often be helpful in terms of accuracy. Here ,we are going to throw out all words except for the very few above. Using so few words in our model will hurt our accuracy,but help us interpret what our classifier is doing.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,252评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,886评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,814评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,869评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,888评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,475评论 1 312
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,010评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,924评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,469评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,552评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,680评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,362评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,037评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,519评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,621评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,099评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,691评论 2 361

推荐阅读更多精彩内容

  • 昨晚花了两个多小时,反复写着孩子和丈夫,却隐隐觉得不妥,没有像往常一样一大早起床就登陆简书按发表,今天下午回看那些...
    Wendy徐阅读 288评论 10 9
  • 时至今日,紧张繁忙的工作总算告一段落。在过去的60天里,感觉自己一直在和时间赛跑,每天都匆匆的来,又匆...
    雲行天下阅读 248评论 3 3
  • 1 自己编写一个乘法表,提示使用人输入一个数字,并输出乘法表。 如下 run print "Which multi...
    然2016阅读 286评论 0 0
  • 天上飘的是白云 屏幕上掠过弹幕君 你一言我一语 各处各地,各有新意 弹幕君 弹幕君 他们都着了魔的爱上你 是奋世盖...
    一忆光年阅读 621评论 4 5
  • 学生阅读准确,正确率高 上节课作业完成情况:学生作业能认真完成,错误较少,老师能及时将学生的错误改正。
    十里总关情阅读 154评论 0 0