【Paper Reading】Novel Human-Object Interaction Detection via Adversarial Domain Generalization

Paper reading

titile

Novel Human-Object Interaction Detection via Adversarial Domain Generalization

author

Yuhang Song, Wenbo Li, Lei Zhang, Jianwei Yang, Emre Kiciman, Hamid Palangi,Jianfeng Gao, C.-C.Jay Kuo, and Pengchuan Zhang

单位

University of Southern California
Samsung Research America AI Center
Microsoft Corporation

数据集

HICO-DET,
但是本文对数据集的划分和之前不一样。
在新的划分中,测试集中的HOI组合都是没有在训练集出现过的。
Unrel

论文地址

https://arxiv.org/pdf/2005.11406.pdf

摘要

We study in this paper the problem of novel human-object interaction (HOI) detection, aiming at improving the generalization ability of the model to unseen scenarios. The challenge mainly stems from the large compositional space of objects and predicates, which leads to the lack of sufficient training data for all the object-predicate combinations. As a result, most existing HOI methods heavily rely on object priors and can hardly generalize to unseen combinations. To tackle this problem, we propose a unified framework of adversarial domain generalization to learn object-invariant features for predicate prediction. To measure the performance improvement, we create a new split of the HICO-DET dataset, where the HOIs in the test set are all unseen triplet categories in the training set. Our experiments show that the proposed framework significantly increases the performance by up to 50% on the new split of HICO-DET dataset and up to 125% on the UnRel dataset for auxiliary evaluation in detecting novel HOIs.
本文研究了新型人机交互检测问题,旨在提高模型对不可见场景的泛化能力。

贡献

1. Our first contribution is to create a new benchmark dataset for the novel HOI detection task, based on the images and annotations from the HICO-DET dataset [2] and the UnRel dataset [28]. The new benchmark dataset avoids the overlapping of the triplet categories in the training set, validation set and test set. This new benchmark contains an additional evaluation set from UnRel dataset [28], highlighting its instances with unusual scenes.
2. Our second contribution is to propose a unified adversarial domain generalization framework, which can serve as a plug-in module for existing models to improve their generalization ability. We instantiate both conditional and uncon�ditional methods within the framework and build its relationship with previous methods. Experiments on HICO-DET and Unrel dataset show that our proposed adversarial training can get uniformly significant improvement on all metrics. Our work shows promising results of adversarial domain generalization in conquering the combinatorial prediction problem in real-world applications.

framwork

image.png

performance

image.png

image.png

image.png

image.png

image.png

学习体会

1. Over the past few years, rapid progress has been made in visual recognition tasks, but image understanding also calls for visual relationship detection

  1. Predicate classification (PredCls): For each human-predict-object triplet in the test set, predict the predicate class given the ground-truth bounding boxes and object label.
  2. Predicate detection (PredDet): For each image in the test set, detect all human-predict-object triplets given the ground-truth bounding boxes and their associated labels.

理解的词:
PredCls
PredDet
SgDet
KLD

文章公式较多,第一次读没有读明白,还需要第二次读

第二次读

待补充
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351