数据挖掘十大经典算法之AdaBoost

一、介绍

AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,是一种迭代算法,由Yoav Freund和Robert Schapire提出。

它的自适应在于:前一个弱分类器分错的样本的权值(样本对应的权值)会得到加强,权值更新后的样本再次被用来训练下一个新的弱分类器。在每轮训练中,用总体(样本总体)训练新的弱分类器,产生新的样本权值、该弱分类器的话语权,一直迭代直到达到预定的错误率或达到指定的最大迭代次数。

AdaBoost方法中使用的分类器可能很弱(比如出现很大错误率),但只要它的分类效果比随机好一点(比如两类问题分类错误率略小于0.5),就能够改善最终得到的模型。而错误率高于随机分类器的弱分类器也是有用的,因为在最终得到的多个分类器的线性组合中,可以给它们赋予负系数,同样也能提升分类效果。

二、AdaBoost算法原理

(1)初始化训练数据(每个样本)的权值分布:如果有N个样本,则每一个训练的样本点最开始时都被赋予相同的权重:1/N。

(2)训练弱分类器。具体训练过程中,如果某个样本已经被准确地分类,那么在构造下一个训练集中,它的权重就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。同时,得到弱分类器对应的话语权。然后,更新权值后的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。

(3)将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,分类误差率小的弱分类器的话语权较大,其在最终的分类函数中起着较大的决定作用,而分类误差率大的弱分类器的话语权较小,其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的比例较大,反之较小。

三、AdaBoost算法描述

Adaboost算法是经过调整的Boosting算法,其能够对弱学习得到的弱分类器的错误进行适应性调整。每一次迭代,都要对权重进行更新。更新的规则是:减小弱分类器分类效果较好的数据的概率,增大弱分类器分类效果较差的数据的概率。最终的分类器是个弱分类器的加权平均。

四、Adaboost的优缺点

优点:

     (1)Adaboost提供一种框架,在框架内可以使用各种方法构建子分类器。可以使用简单的弱分类器,不用对特征进行筛选。

     (2)Adaboost算法不需要弱分类器的先验知识,最后得到的强分类器的分类精度依赖于所有弱分类器。无论是应用于人造数据还是真实数据,Adaboost都能显著的提高学习精度。

     (3)Adaboost算法不需要预先知道弱分类器的错误率上限,且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,可以深挖分类器的能力。Adaboost可以根据弱分类器的反馈,自适应地调整假定的错误率,执行的效率高。

     (4)Adaboost对同一个训练样本集训练不同的弱分类器,按照一定的方法把这些弱分类器集合起来,构造一个分类能力很强的强分类器,即“三个臭皮匠赛过一个诸葛亮”。

缺点:

     在Adaboost训练过程中,Adaboost会使得难于分类样本的权值呈指数增长,训练将会过于偏向这类困难的样本,导致Adaboost算法易受噪声干扰。此外,Adaboost依赖于弱分类器,而弱分类器的训练时间往往很长。

五、Adaboost方法参数解说明

from sklearn.ensemble import AdaBoostClassifier

Adaboost-参数:

base_estimator:基分类器,默认是决策树,在该分类器基础上进行boosting,理论上可以是任意一个分类器,但是如果是其他分类器时需要指明样本权重。

n_estimators:基分类器提升(循环)次数,默认是50次,这个值过大,模型容易过拟合;值过小,模型容易欠拟合。

learning_rate:学习率,表示梯度收敛速度,默认为1,如果过大,容易错过最优值,如果过小,则收敛速度会很慢;该值需要和n_estimators进行一个权衡,当分类器迭代次数较少时,学习率可以小一些,当迭代次数较多时,学习率可以适当放大。

algorithm:boosting算法,也就是模型提升准则,有两种方式SAMME, 和SAMME.R两种,默认是SAMME.R,两者的区别主要是弱学习器权重的度量,前者是对样本集预测错误的概率进行划分的,后者是对样本集的预测错误的比例,即错分率进行划分的,默认是用的SAMME.R。

random_state:随机种子设置。

关于Adaboost模型本身的参数并不多,但是我们在实际中除了调整Adaboost模型参数外,还可以调整基分类器的参数,关于基分类的调参,和单模型的调参是完全一样的,比如默认的基分类器是决策树,那么这个分类器的调参和我们之前的Sklearn参数详解——决策树是完全一致。

Adaboost-对象:

estimators_:以列表的形式返回所有的分类器。

classes_:类别标签

estimator_weights_:每个分类器权重

estimator_errors_:每个分类器的错分率,与分类器权重相对应。

feature_importances_:特征重要性,这个参数使用前提是基分类器也支持这个属性。

Adaboost-方法:

decision_function(X):返回决策函数值(比如svm中的决策距离)

fit(X,Y):在数据集(X,Y)上训练模型。

get_parms():获取模型参数

predict(X):预测数据集X的结果。

predict_log_proba(X):预测数据集X的对数概率。

predict_proba(X):预测数据集X的概率值。

score(X,Y):输出数据集(X,Y)在模型上的准确率。

staged_decision_function(X):返回每个基分类器的决策函数值

staged_predict(X):返回每个基分类器的预测数据集X的结果。

staged_predict_proba(X):返回每个基分类器的预测数据集X的概率结果。

staged_score(X, Y):返回每个基分类器的预测准确率。

参考:

https://blog.csdn.net/u011067360/article/details/24368085

https://www.cnblogs.com/mdevelopment/p/9445090.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352