Biostatistics(8)概率与概率分布

3.3.7 泊松分布 Poisson distribution

Simeon Denis Poisson wrote a paper entitled "Researches on the probability of criminal and civil verdicts" published in 1837. Poisson discovered the Poisson Distribution as an approximation of Binomial Distribution when the number of trials is large and the probability of a success tends to zero.


image.png

假如随机变量X服从泊松分布,即X~B(n,p),那么随机变量X的概率分布律为:

Poisson.png

令λ = np,假设当n接近无限,p接近0,那么λ = np则不变,因此,p就可以转变为λ/n。
因此X的概率分布律变为:

Poisson.png

泊松分布的PDF和CDF

PDF&CDF.png

泊松分布的平均值和方差
平均值:E(x)=np= λ
方差: λ(1-p):其中当p非常小时,近似等于 λ

柏松分布的实际例子
Poisson distribution is for counts-if events happen at a constant rate over time or space(interval),the Poisson distribution gives the probability of X number of events occurring in an interval.
根据经验,下述事件符合泊松分布:
1、The number of deaths by horse kicking in the Prussian army(first application)
2、Birth defects and genetic mutations
3、Rare diseases (like Leukemia, but not AIDS because it is infectious and so not independent)
4、Car accidents during a given time period
5、Number of typing errors on a page

深入理解泊松分布
1、The poisson distribution is generated by processes in which a large number of intervals (time period, space, etc.) are hit by a relatively small number of events.
2、The occurrence or non-occurrence of a hit in an interval is independent to another occurrence or non-occurrence in the same interval, and the occurrences of the hit in any two intervals are independent to each other as well.
3、The probability of observing the occurrence of two or more hits in a small interval is nearly zero.
4、In practice, since n is very large and p is very small, we only need to care about the mean occurrence in a given time interval which solely determine the corresponding poisson distribution.

Example1 of a Poisson Distribution
A life insurance salesman sells on the average 3 life insurance policies per week. Then, what’s the probability that he will sell
some policy in a week?
2 or more policies but less than 5 policies.
Assuming that there are 5 working days per week, what is the probability that in a given day he will sell one policy?
A:
The probability this guy does not sell any policy in a week:

A1.png

Therefore, the probability he will sell some policy is 1- P(x=0)=0.950213.
The probability he will sell 2~4 policy is P(x=2)+P(x=3)+P(x=4) = 0.6434504.
If he works five days a week, then the average policy he sells a day is 3/5=0.6. Accordingly, the chances that he will sell one policy in a day is
image.png

Example2 of a Poisson Distribution
(1)If there are 3X10^9 basepairs in the human genome and the mutation rate per generation per basepair is 10^-9, what is the mean number of new mutations that a child will have, what is the variance in this number, and what will the distribution look like?
A:Mean=310^910^-9=3
(2) Generating random sequence fragments are necessary steps for second-generation sequencing. Suppose the average length of randomly generated fragments is 500bp, if we have a cDNA of 1.5kb and repeat the random fragmentation 200 times, how many times will we see two fragments at each step?

fragments.png

A:The average number of fragments for a cDNA of 1.5kb is 1500/500 = 3.
frag.png

The average number of cuts on a cDNA of 1.5kb is 2, λ=2
P(x=1, λ=2)=0.2706706
Out of 200 times, the number of times we observe two fragments is 200 * 0.2240418 = 54.13≈54.

Example3 of a Poisson Distribution
Cole (1946) Arthropoda(节肢动物)Data:
Cole scattered boards on a forest floor and periodically counted the arthropoda forms under them. A number of questions can be asked: If 102 spiders are to be distributed at random among 240 pieces of cover, how many of the pieces of cover would we expect to find empty, with one spider, two spiders, ..., n spiders?
A:If spiders arrive at and stay under boards without respect to the number of spiders already under a boarder, then their occurrences are independently to each other - Poisson distribution.
The average occurrence of spiders is 102/240=0.425 (mean and variance of the poisson distribution)
The probability of a given board has no spider

probability.png

Our of 240 boards, we would expect to see 240 * 0.6537698=165.0≈157
Similarly,the number of boards with three spiders:
three spiders.png

This is the expected number derived from poisson distribution. How does it compare with the real number?
Real data.png

Whether a spider decides to stay under a board is not affected by the presence or absence of other spiders in that board.
How about other species?
Similar experiments were done on Sowbugs( 潮虫、鼠妇)
Sowbugs.png

Sowbugs are social. The reason why there are more "zero" boards is brought about by sowbugs leaving "one" class boards for more social conditions, which removes boards from the "one" class, and place them in the "zero" class.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容

  • get方式请求数据: 通过jsonp请求数据,通过动态创建script标签来访问服务器,把回调函数名作为参数传递给...
    前端小华子阅读 1,233评论 0 1
  • 想去河源市图书馆一个月有余了,今天才找到它。因为下雨的缘故,骑摩托车自行车不方便,坐公交又没有直达的,在雨中撑伞步...
    更向远行阅读 1,007评论 0 0
  • 今天是个好日子,今天是个特殊的日子,今天是厦门路小学第一届家长节,提倡家校合育的理念!也让我们这些家长走...
    兆木兆木阅读 154评论 1 3