Tips of doing machine learning

a. Understand the data(exploration, type of features, numerical vs categorical)

b. Understand the metric to optimize

c. Decide cross validation strategy

d. Start hyper parameter tuning which furthermore includes:

     i. Data transformations (like scaling, remove outliers, treating null values, transformation categorical variables, do feature selections, create interactions)

     ii. Choosing algorithms and tuning their hyper parameters

     iii. Saving results

e. Combining models (ensemble), possibly on multiple levels


nice blogs:

http://blog.kaggle.com/2016/02/10/profiling-top-kagglers-kazanova-new-1-in-the-world/

https://mlwave.com/about/

http://fastml.com/

https://www.analyticsvidhya.com/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容