tensorflow: 在开始前对tensor做一些处理

tf.boolean_mask

这个操作可以用于留下指定的元素,类似于numpy的操作。

import numpy as np
tensor = tf.range(4)
mask = np.array([True, False, True, False])
bool_mask = tf.boolean_mask(tensor, mask)
print sess.run(bool_mask)
[0 2]

tf.greater

首先张量x和张量y的尺寸要相同,输出的tf.greater(x, y)也是一个和x,y尺寸相同的张量。如果x的某个元素比y中对应位置的元素大,则tf.greater(x, y)对应位置返回True,否则返回False。

import tensorflow as tf 

x = tf.Variable([[1,2,3], [6,7,8], [11,12,13]])
y = tf.Variable([[0,1,2], [5,6,7], [10,11,12]])

x1 = tf.Variable([[1,2,3], [6,7,8], [11,12,13]])
y1 = tf.Variable([[10,1,2], [15,6,7], [10,21,12]])

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(tf.greater(x, y)))
    print(sess.run(tf.greater(x1, y1)))



[[ True  True  True]
 [ True  True  True]
 [ True  True  True]]
[[False  True  True]
 [False  True  True]
 [ True False  True]]

tf.py_func

py_func(
    func,
    inp,
    Tout,
    stateful=True,
    name=None
) 

参数:
func: 一个 Python 函数, 它接受 NumPy 数组作为输入和输出,并且数组的类型和大小必须和输入和输出用来衔接的 Tensor 大小和数据类型相匹配.
inp: 输入的 Tensor 列表.
Tout: 输出 Tensor 数据类型的列表或元祖.
stateful: 状态,布尔值.
name: 节点 OP 的名称.

i = tf.constant([[0,1,2,3,4],
                [9,8,0,3,0]])
a  = tf.cast(i,tf.bool)
b = tf.gather(i,1)
c = tf.not_equal(b,0)
neg_c = tf.logical_not(c)
indices = tf.where(c)
neg_indices = tf.where(neg_c)
def choose(x):
    return np.random.choice(np.ravel(x))
d = tf.py_func(choose,[indices],tf.int64)
with tf.Session() as sess:
    print(sess.run(a))
    print(sess.run(b))
    print(sess.run(c))
    print("neg_c:",sess.run(neg_c))
    print("indices:",sess.run(indices))
    print("neg_indices:",sess.run(neg_indices))
    print("....",sess.run(d))



[[False  True  True  True  True]
 [ True  True False  True False]]
[9 8 0 3 0]
[ True  True False  True False]
neg_c: [False False  True False  True]
indices: [[0]
 [1]
 [3]]
neg_indices: [[2]
 [4]]
.... 1

tf.cond

tf.cond(pred, true_fn=None, false_fn=None, strict=False, name=None, fn1=None, fn2=None)

Return true_fn() if the predicate pred is true else false_fn()

import tensorflow as tf

a = tf.placeholder(tf.bool)  #placeholder for a single boolean value
b = tf.cond(tf.equal(a, tf.constant(True)), lambda: tf.constant(10), lambda: tf.constant(0))
sess = tf.InteractiveSession()
res = sess.run(b, feed_dict = {a: True})
sess.close()
print(res)

10

tf.while_loop

tf.while_loop(
cond,
body,
loop_vars,
shape_invariants=None,
parallel_iterations=10,
back_prop=True,
swap_memory=False,
name=None,
maximum_iterations=None,
return_same_structure=False
)

作用:Repeat body while the condition cond is true

注意的是:loop_vars 是一个传递进去condbodytuple, namedtuple or list of tensors . condbody同时接受 both与 loop_vars一样多的参数。

例子:

def body(x):
    a = tf.random_uniform(shape=[2, 2], dtype=tf.int32, maxval=100)
    b = tf.constant(np.array([[1, 2], [3, 4]]), dtype=tf.int32)
    c = a + b
    return tf.nn.relu(x + c)
def condition(x):
    return tf.reduce_sum(x) < 100x = tf.Variable(tf.constant(0, shape=[2, 2]))with tf.Session():
    tf.initialize_all_variables().run()
    result = tf.while_loop(condition, body, [x])
    print(result.eval())
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356

推荐阅读更多精彩内容