tf.boolean_mask
这个操作可以用于留下指定的元素,类似于numpy的操作。
import numpy as np
tensor = tf.range(4)
mask = np.array([True, False, True, False])
bool_mask = tf.boolean_mask(tensor, mask)
print sess.run(bool_mask)
[0 2]
tf.greater
首先张量x和张量y的尺寸要相同,输出的tf.greater(x, y)也是一个和x,y尺寸相同的张量。如果x的某个元素比y中对应位置的元素大,则tf.greater(x, y)对应位置返回True,否则返回False。
import tensorflow as tf
x = tf.Variable([[1,2,3], [6,7,8], [11,12,13]])
y = tf.Variable([[0,1,2], [5,6,7], [10,11,12]])
x1 = tf.Variable([[1,2,3], [6,7,8], [11,12,13]])
y1 = tf.Variable([[10,1,2], [15,6,7], [10,21,12]])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(tf.greater(x, y)))
print(sess.run(tf.greater(x1, y1)))
[[ True True True]
[ True True True]
[ True True True]]
[[False True True]
[False True True]
[ True False True]]
tf.py_func
py_func(
func,
inp,
Tout,
stateful=True,
name=None
)
参数:
func: 一个 Python 函数, 它接受 NumPy 数组作为输入和输出,并且数组的类型和大小必须和输入和输出用来衔接的 Tensor 大小和数据类型相匹配.
inp: 输入的 Tensor 列表.
Tout: 输出 Tensor 数据类型的列表或元祖.
stateful: 状态,布尔值.
name: 节点 OP 的名称.
i = tf.constant([[0,1,2,3,4],
[9,8,0,3,0]])
a = tf.cast(i,tf.bool)
b = tf.gather(i,1)
c = tf.not_equal(b,0)
neg_c = tf.logical_not(c)
indices = tf.where(c)
neg_indices = tf.where(neg_c)
def choose(x):
return np.random.choice(np.ravel(x))
d = tf.py_func(choose,[indices],tf.int64)
with tf.Session() as sess:
print(sess.run(a))
print(sess.run(b))
print(sess.run(c))
print("neg_c:",sess.run(neg_c))
print("indices:",sess.run(indices))
print("neg_indices:",sess.run(neg_indices))
print("....",sess.run(d))
[[False True True True True]
[ True True False True False]]
[9 8 0 3 0]
[ True True False True False]
neg_c: [False False True False True]
indices: [[0]
[1]
[3]]
neg_indices: [[2]
[4]]
.... 1
tf.cond
tf.cond(pred, true_fn=None, false_fn=None, strict=False, name=None, fn1=None, fn2=None)
Return true_fn()
if the predicate pred
is true else false_fn()
import tensorflow as tf
a = tf.placeholder(tf.bool) #placeholder for a single boolean value
b = tf.cond(tf.equal(a, tf.constant(True)), lambda: tf.constant(10), lambda: tf.constant(0))
sess = tf.InteractiveSession()
res = sess.run(b, feed_dict = {a: True})
sess.close()
print(res)
10
tf.while_loop
tf.while_loop(
cond,
body,
loop_vars,
shape_invariants=None,
parallel_iterations=10,
back_prop=True,
swap_memory=False,
name=None,
maximum_iterations=None,
return_same_structure=False
)
作用:Repeat body
while the condition cond
is true
注意的是:loop_vars
是一个传递进去cond
与body
的 tuple, namedtuple or list of tensors . cond
与 body
同时接受 both与 loop_vars
一样多的参数。
例子:
def body(x):
a = tf.random_uniform(shape=[2, 2], dtype=tf.int32, maxval=100)
b = tf.constant(np.array([[1, 2], [3, 4]]), dtype=tf.int32)
c = a + b
return tf.nn.relu(x + c)
def condition(x):
return tf.reduce_sum(x) < 100x = tf.Variable(tf.constant(0, shape=[2, 2]))with tf.Session():
tf.initialize_all_variables().run()
result = tf.while_loop(condition, body, [x])
print(result.eval())