面试算法:希尔排序

来源:swift-algorithm-club

希尔排序(Shell Sort)

希尔排序是插入排序的一种更高效的改进版本,方法是将原始列表分成较小的子列表,然后使用插入排序对其进行单独排序。

怎么运行的

插入排序是比较相连的元素,如果它们顺序不对就交换它们,而希尔排序算法会比较相距很远的元素。

元素之间的距离称为 gap。 如果被比较的元素的顺序错误,则它们会在 gap 中交换。 这消除了插入排序中常见的许多中间副本。

译注: gap已经被翻译成步长/增量/间距等,为了避免歧义,本文就不做翻译,直接写成gap

这个想法是,通过在大 gap 上移动元素,数组变得非常快速地部分排序。 这使得之后的排序过程更快,因为他们不再需要交换那么多项。

一轮完成后,gap变小,新一轮开始。 这将重复,直到 gap 大小为1,此时算法的功能就像插入排序一样。 但是由于数据已经很好地排序,所以最后一轮可以非常快。

例子

假设我们想使用希尔排序对数组 [64, 20, 50, 33, 72, 10, 23, -1, 4] 进行排序。

我们首先将数组的长度除以2:

n = floor(9/2) = 4

这是 gap 大小。

我们创建n子列表。 在每个子列表中,每一项的间隔是大小为ngap 。 在我们的示例中,我们需要制作其中四个子列表。 子列表按insertionSort()函数排序。

这可能没有多大意义,所以让我们仔细看看会发生什么。

第一轮如下。 我们有n = 4,所以我们制作了四个子列表:

sublist 0:  [ 64, xx, xx, xx, 72, xx, xx, xx, 4  ]
sublist 1:  [ xx, 20, xx, xx, xx, 10, xx, xx, xx ]
sublist 2:  [ xx, xx, 50, xx, xx, xx, 23, xx, xx ]
sublist 3:  [ xx, xx, xx, 33, xx, xx, xx, -1, xx ]

如您所见,每个子列表仅包含原始数组中的每间隔4的项。 不在子列表中的项用xx表示。 所以第一个子列表是[64,72,4],第二个子列表是[20,10],依此类推。 我们使用这个“gap”的原因是我们不必实际制作新的数组。 相反,我们将它们交织在原始数组中。

我们现在在每个子列表上调用一次insertionSort()

插入排序的这个特定版本从后面到前面排序。子列表中的每个项目都与其他项目进行比较。如果它们的顺序错误,则交换值并一直向下移动,直到我们到达子列表的开头。

因此对于子列表0,我们将472交换,然后将464交换。 排序后,此子列表如下所示:

sublist 0:  [ 4, xx, xx, xx, 64, xx, xx, xx, 72 ]

排序后的其他三个子列表:

sublist 1:  [ xx, 10, xx, xx, xx, 20, xx, xx, xx ]
sublist 2:  [ xx, xx, 23, xx, xx, xx, 50, xx, xx ]
sublist 3:  [ xx, xx, xx, -1, xx, xx, xx, 33, xx ]

完整的数组看上去是:

[ 4, 10, 23, -1, 64, 20, 50, 33, 72 ]

它还没有完全排序,但它比以前更加排序。 这完成了第一次轮操作。

在第二轮中,我们将 gap 大小除以2:

n = floor(4/2) = 2

这意味着我们现在只创建两个子列表:

sublist 0:  [  4, xx, 23, xx, 64, xx, 50, xx, 72 ]
sublist 1:  [ xx, 10, xx, -1, xx, 20, xx, 33, xx ]

每个子列表包含每个间隔为2的项。 我们再次调用insertionSort()来对这些子列表进行排序。 结果是:

sublist 0:  [  4, xx, 23, xx, 50, xx, 64, xx, 72 ]
sublist 1:  [ xx, -1, xx, 10, xx, 20, xx, 33, xx ]

请注意,在每个列表中只有两个元素位置顺序不对(译注:sublist 0是64和50,sublist 1是10和-1)。 因此插入排序非常快。 那是因为我们已经在第一轮中对数组进行了一些排序。

总数组现在看起来像这样:

[ 4, -1, 23, 10, 50, 20, 64, 33, 72 ]

这样就完成了第二轮。 最后一轮的gap是:

n = floor(2/2) = 1

gap 大小为1表示我们只有一个子列表,即数组本身,我们再次调用insertionSort()对其进行排序。 最终排序的数组是:

[ -1, 4, 10, 20, 23, 33, 50, 64, 72 ]

在大多数情况下,希尔排序的性能为O(n^2),如果幸运,则为 O(nlogn)。 该算法是不稳定的排序; 它可能会改变具有相等值的元素的相对顺序。

gap 序列

gap 序列”确定 gap 的初始大小以及每次迭代如何使 gap 变小。 良好的 gap 序列对于希尔排序表现良好非常重要。

上面实现例子中的 gap 序列是希尔原始版本中的 gap 序列:初始值是数组大小的一半,然后每次除以2。 还有其他方法可以计算 gap 序列

代码

希尔排序的Swift实现:

public func insertSort(_ list: inout[Int], start: Int, gap: Int) {
    for i in stride(from: (start + gap), to: list.count, by: gap) {
        let currentValue = list[I]
        var pos = I
        while pos >= gap && list[pos - gap] > currentValue {
            list[pos] = list[pos - gap]
            pos -= gap
        }
        list[pos] = currentValue
    }
}

public func shellSort(_ list: inout [Int]) {
    var sublistCount = list.count / 2
    while sublistCount > 0 {
        for pos in 0..<sublistCount {
            insertionSort(&list, start: pos, gap: sublistCount)
        }
        sublistCount = sublistCount / 2
    }
}

var arr = [64, 20, 50, 33, 72, 10, 23, -1, 4, 5]

shellSort(&arr)

感谢:https://www.jianshu.com/p/1432cca96aa4

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容