MySQL实操笔记(1)


问题1:MySQL索引类型有哪些区别是什么?
MySQL索引类型:
normal:表示普通索引、
unique:表示唯一的,不允许重复的索引,如果该字段信息保证不会重复,可以设置为unique。
full text:表示全文搜索的索引,用于搜索很长一篇文章的时候,效果特别好,如果是比较短的文本,比如一两行字的普通的normal即可。
索引类型有建立索引的字段内容特性来决定,通常normal最常见。
问题2:实际过程中,应该选取表中哪些字段作为索引?
为使索引的使用效率更高,在创建索引时,必须考虑在哪些字段上创建索引和创建什么类型的索引,7个原则如下:
1)选择唯一索引;
唯一性索引的值是唯一的,可以更快速的通过该索引来确定某条记录。例如,学生表中学号是具有唯一性的字段。为该字段建立唯一性索引可以很快的确定某个学生的信息。如果使用姓名的话,可能存在同名现象,从而降低查询速度。
2)为经常需要排序、分组和联合操作的字段建立索引;
经常需要ORDER BY、GROUP BY、DISTINCT和UNION等操作的字段,排序操作会浪费很多时间。如果为其建立索引,可以有效地避免排序操作。
3)为经常作为查询条件的字段建立索引;
如果某个字段经常用来做查询条件,那么该字段的查询速度会影响整个表的查询速度。因此,为这样的字段建立索引,可以提高整个表的查询速度。
4)限制索引的数目;
索引的数目不是越多越好。每个索引都需要占用磁盘空间,索引越多,需要的磁盘空间就越大。修改表时,对索引的重构和更新很麻烦。越多的索引,会使更新表变得很浪费时间。
5)尽量使用数据量少的索引;
如果索引的值很长,那么查询的速度会受到影响。例如,对一个CHAR(100)类型的字段进行全文检索需要的时间肯定要比对CHAR(10)类型的字段需要的时间要多。
6)尽量使用前缀来索引;
如果索引字段的值很长,最好使用值的前缀来索引。例如,TEXT和BLOG类型的字段,进行全文检索会很浪费时间。如果只检索字段的前面的若干个字符,这样可以提高检索速度。
7)删除不在使用或很少使用的索引;
表中的数据被大量更新,或者数据的使用方式被改变后,原有的一些索引可能不再需要。数据库管理员应当定期找出这些索引,将它们删除,从而减少索引对更新操作的影响。
选择索引的最终目的是为了使查询的速度变快。上面给出的原则是最基本的准则,但不能拘泥于上面的准则。根据应用的实际情况进行分析和判断,选择最合适的索引方式。
问题3: 在使用MySQL索引的时候, 选择b-tree还是hash?

  1. hash索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询. 比如< , 由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样
  2. 对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用
  3. Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果
  4. Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。
  5. B-Tree索引可以被用在像=,>,>=,<,<=和BETWEEN这些比较操作符上。而且还可以用于LIKE操作符,只要它的查询条件是一个不以通配符开头的常量
  6. innodb和myisam存储引擎不能使用hash索引.........
    扩展:图找不到了。
  7. Hash索引:
    Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
    可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢?任何事物都是有两面性的,Hash 索引也一样,虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端,主要有以下这些。
    (1)Hash 索引仅仅能满足”=”,”IN”和”<=>”查询,不能使用范围查询。
    由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。
    (2)Hash 索引无法被用来避免数据的排序操作。
    由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;
    (3)Hash 索引不能利用部分索引键查询。
    对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。
    (4)Hash 索引在任何时候都不能避免表扫描。
    前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。
    (5)Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。
    对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下
  8. B-Tree索引
    B-Tree 索引是 MySQL 数据库中使用最为频繁的索引类型,除了 Archive 存储引擎之外的其他所有的存储引擎都支持 B-Tree 索引。不仅仅在 MySQL 中是如此,实际上在其他的很多数据库管理系统中B-Tree 索引也同样是作为最主要的索引类型,这主要是因为 B-Tree 索引的存储结构在数据库的数据检 索中有非常优异的表现。
    一般来说, MySQL 中的 B-Tree 索引的物理文件大多都是以 Balance Tree 的结构来存储的,也就是所有实际需要的数据都存放于 Tree 的 Leaf Node ,而且到任何一个 Leaf Node 的最短路径的长度都是完全相同的,所以我们大家都称之为 B-Tree 索引当然,可能各种数据库(或 MySQL 的各种存储引擎)在存放自己的 B-Tree 索引的时候会对存储结构稍作改造。如 Innodb 存储引擎的 B-Tree 索引实际使用的存储结构实际上是 B+Tree ,也就是在 B-Tree 数据结构的基础上做了很小的改造,在每一个
    Leaf Node 上面出了存放索引键的相关信息之外,还存储了指向与该 Leaf Node 相邻的后一个 LeafNode 的指针信息,这主要是为了加快检索多个相邻 Leaf Node 的效率考虑。
    在 Innodb 存储引擎中,存在两种不同形式的索引,一种是 Cluster 形式的主键索引( Primary Key ),另外一种则是和其他存储引擎(如 MyISAM 存储引擎)存放形式基本相同的普通 B-Tree 索引,这种索引在 Innodb 存储引擎中被称为 Secondary Index 。下面我们通过图示来针对这两种索引的存放形式做一个比较。
    图示中左边为 Clustered 形式存放的 Primary Key ,右侧则为普通的 B-Tree 索引。两种 Root Node 和 Branch Nodes 方面都还是完全一样的。而 Leaf Nodes 就出现差异了。在 Prim中, Leaf Nodes 存放的是表的实际数据,不仅仅包括主键字段的数据,还包括其他字段的数据据以主键值有序的排列。而 Secondary Index 则和其他普通的 B-Tree 索引没有太大的差异,Leaf Nodes 出了存放索引键 的相关信息外,还存放了 Innodb 的主键值。
    所以,在 Innodb 中如果通过主键来访问数据效率是非常高的,而如果是通过 Secondary Index 来访问数据的话, Innodb 首先通过 Secondary Index 的相关信息,通过相应的索引键检索到 Leaf Node之后,需要再通过 Leaf Node 中存放的主键值再通过主键索引来获取相应的数据行。MyISAM 存储引擎的主键索引和非主键索引差别很小,只不过是主键索引的索引键是一个唯一且非空 的键而已。而且 MyISAM 存储引擎的索引和 Innodb 的 Secondary Index 的存储结构也基本相同,主要的区别只是 MyISAM 存储引擎在 Leaf Nodes 上面出了存放索引键信息之外,再存放能直接定位到 MyISAM 数据文件中相应的数据行的信息(如 Row Number ),但并不会存放主键的键值信息
    问题4:MySQL Explain

在日常工作中,我们会有时会开慢查询去记录一些执行时间比较久的SQL语句,找出这些SQL语句并不意味着完事了,些时我们常常用到explain这个命令来查看一个这些SQL语句的执行计划,查看该SQL语句有没有使用上了索引,有没有做全表扫描,这都可以通过explain命令来查看。所以我们深入了解MySQL的基于开销的优化器,还可以获得很多可能被优化器考虑到的访问策略的细节,以及当运行SQL语句时哪种策略预计会被优化器采用。
-- 实际SQL,查找用户名为Jefabc的员工select * from emp where name = 'Jefabc';
-- 查看SQL是否使用索引,前面加上explain即可
explain select * from emp where name = 'Jefabc';
expain出来的信息有10列,分别是id、select_type、table、type、possible_keys、key、key_len、ref、rows、Extra
概要描述:
id:选择标识符
select_type:表示查询的类型。
table:输出结果集的表
partitions:匹配的分区
type:表示表的连接类型
possible_keys:表示查询时,可能使用的索引
key:表示实际使用的索引
key_len:索引字段的长度
ref:列与索引的比较
rows:扫描出的行数(估算的行数)
filtered:按表条件过滤的行百分比
Extra:执行情况的描述和说明
下面对这些字段出现的可能进行解释:
一、 id
SELECT识别符。这是SELECT的查询序列号
我的理解是SQL执行的顺序的标识,SQL从大到小的执行

  1. id相同时,执行顺序由上至下
  2. 如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行
  3. id如果相同,可以认为是一组,从上往下顺序执行;在所有组中,id值越大,优先级越高,越先执行
    -- 查看在研发部并且名字以Jef开头的员工,经典查询
    explain select e.no, e.name from emp e left join dept d on e.dept_no = d.no where e.name like 'Jef%' and d.name = '研发部';
    二、select_type
    示查询中每个select子句的类型
    (1) SIMPLE(简单SELECT,不使用UNION或子查询等)
    (2) PRIMARY(子查询中最外层查询,查询中若包含任何复杂的子部分,最外层的select被标记为PRIMARY)
    (3) UNION(UNION中的第二个或后面的SELECT语句)
    (4) DEPENDENT UNION(UNION中的第二个或后面的SELECT语句,取决于外面的查询)
    (5) UNION RESULT(UNION的结果,union语句中第二个select开始后面所有select)
    (6) SUBQUERY(子查询中的第一个SELECT,结果不依赖于外部查询)
    (7) DEPENDENT SUBQUERY(子查询中的第一个SELECT,依赖于外部查询)
    (8) DERIVED(派生表的SELECT, FROM子句的子查询)
    (9) UNCACHEABLE SUBQUERY(一个子查询的结果不能被缓存,必须重新评估外链接的第一行)
    三、table
    显示这一步所访问数据库中表名称(显示这一行的数据是关于哪张表的),有时不是真实的表名字,可能是简称,例如上面的e,d,也可能是第几步执行的结果的简称
    四、type
    对表访问方式,表示MySQL在表中找到所需行的方式,又称“访问类型”。
    常用的类型有: ALL、index、range、 ref、eq_ref、const、system、NULL(从左到右,性能从差到好)
    ALL:Full Table Scan, MySQL将遍历全表以找到匹配的行
    index: Full Index Scan,index与ALL区别为index类型只遍历索引树
    range:只检索给定范围的行,使用一个索引来选择行
    ref: 表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值
    eq_ref: 类似ref,区别就在使用的索引是唯一索引,对于每个索引键值,表中只有一条记录匹配,简单来说,就是多表连接中使用primary key或者 unique key作为关联条件
    const、system: 当MySQL对查询某部分进行优化,并转换为一个常量时,使用这些类型访问。如将主键置于where列表中,MySQL就能将该查询转换为一个常量,system是const类型的特例,当查询的表只有一行的情况下,使用system
    NULL: MySQL在优化过程中分解语句,执行时甚至不用访问表或索引,例如从一个索引列里选取最小值可以通过单独索引查找完成。
    五、possible_keys
    指出MySQL能使用哪个索引在表中找到记录,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询使用(该查询可以利用的索引,如果没有任何索引显示 null)
    该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。
    如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查WHERE子句看是否它引用某些列或适合索引的列来提高你的查询性能。如果是这样,创造一个适当的索引并且再次用EXPLAIN检查查询
    六、Key
    key列显示MySQL实际决定使用的键(索引),必然包含在possible_keys中
    如果没有选择索引,键是NULL。要想强制MySQL使用或忽视possible_keys列中的索引,在查询中使用FORCE INDEX、USE INDEX或者IGNORE INDEX。
    七、key_len
    表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度(key_len显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是根据表定义计算而得,不是通过表内检索出的)
    不损失精确性的情况下,长度越短越好
    八、ref
    列与索引的比较,表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值
    九、rows
    估算出结果集行数,表示MySQL根据表统计信息及索引选用情况,估算的找到所需的记录所需要读取的行数
    十、Extra
    该列包含MySQL解决查询的详细信息,有以下几种情况:
    Using where:不用读取表中所有信息,仅通过索引就可以获取所需数据,这发生在对表的全部的请求列都是同一个索引的部分的时候,表示mysql服务器将在存储引擎检索行后再进行过滤
    Using temporary:表示MySQL需要使用临时表来存储结果集,常见于排序和分组查询,常见 group by ; order by
    Using filesort:当Query中包含 order by 操作,而且无法利用索引完成的排序操作称为“文件排序”
    -- 测试Extra的filesort
    explain select * from emp order by name;
    Using join buffer:改值强调了在获取连接条件时没有使用索引,并且需要连接缓冲区来存储中间结果。如果出现了这个值,那应该注意,根据查询的具体情况可能需要添加索引来改进能。
    Impossible where:这个值强调了where语句会导致没有符合条件的行(通过收集统计信息不可能存在结果)。
    Select tables optimized away:这个值意味着仅通过使用索引,优化器可能仅从聚合函数结果中返回一行
    No tables used:Query语句中使用from dual 或不含任何from子句
    -- explain select now() from dual;
    总结:
    • EXPLAIN不会告诉你关于触发器、存储过程的信息或用户自定义函数对查询的影响情况
    • EXPLAIN不考虑各种Cache
    • EXPLAIN不能显示MySQL在执行查询时所作的优化工作
    • 部分统计信息是估算的,并非精确值
    • EXPALIN只能解释SELECT操作,其他操作要重写为SELECT后查看执行计划。
    通过收集统计信息不可能存在结果
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351