Android利用ocr实现身份证识别

首先我们需要简单的了解一下ocr:

ocr (optical character recognition ,光学字符识别) 是指电子设备(例如扫描仪或数码相机)检查纸上的字符,通过检测暗,亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程。 这样就给我编程提供了接口,我们可以识别图片的文字了 (有些文档我们通过手机拍照的,直接生成word )身份证识别,银行卡识别等。

简单的说ocr就是一种光学识别。

如何在android中实现ocr呢?google已经为我们提供了一个类库,里面有对应的api可以供我们调用,

在github的地址是:github.com/rmtheis/tess-two

我们可以将该库依赖进我们的项目中,就可以实现了身份证上文字的识别,特别注意的是再使用该类库时,需要在我们手机的根目录下新建一个tessdata文件夹,里面放我们的中文识别符,既然要检测中文,当然要一个类似于字典的文件。

中文识别符的下载地址为:github.com/daheicode/chi_sim.git

下面简单介绍介绍一下这个类库的使用,使用起来比较简单:


tess-two有一个核心的类  TessBaseAPI,通过这个类我们的中文识别字符,通过调用该类的init()方法来实现,然后设置我们要识别身份证的图片,调用该类的setImage()方法实现,最后返回我们的结果,通过调用getUTF8Text()方法来实现。就会得到我们的识别结果。

该类的操作都属于耗时操作,所以要放在工作线程中,避免ui线程阻塞。

可以看出该方法简单,当然效果也是很差强人意的,本人亲测,识别速度很慢,大概需要30s左右,并且识别的准确度也很低,tees-two对中文识别本来就不是很好,所以这种方法不是很好,我们需要一个更好的识别系统,能更快速,更准确的识别。下一篇我会介绍使用百度云的文字识别来进行身份证的识别。

地址为:

www.jianshu.com/p/7d815045cef9

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,884评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,212评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,351评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,412评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,438评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,127评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,714评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,636评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,173评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,264评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,402评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,073评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,763评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,253评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,382评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,749评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,403评论 2 358

推荐阅读更多精彩内容