1.1 读写方式
- producer 采用 push 模式将消息发布到 broker,每条消息都被 append 到 patition 中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障 kafka 吞吐率)。
- 读也只在leader上读,flower只是数据的一个备份,保证leader被挂掉后顶上来,并不往外提供服务。
1.2 消息路由
producer 发送消息到 broker 时,会根据分区算法选择将其存储到哪一个 partition。其路由机制为:
- 指定了 patition,则直接使用;
- 未指定 patition 但指定 key,通过对 key 的 value 进行hash 选出一个 patition
- patition 和 key 都未指定,使用轮询选出一个 patition。
1.3 写入流程说明
- producer 先从 zookeeper 的 "/brokers/.../state" 节点找到该 partition 的 leader
- producer 将消息发送给该 leader
- leader 将消息写入本地 log
- followers 从 leader pull 消息,写入本地 log 后 leader 发送 ACK
- leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK
1.4 kafka副本(replica)
- 当某个topic的replication-factor为N且N大于1时,每个Partition都会有N个副本(Replica)。kafka的replica包含leader与follower。
- Replica的个数小于等于Broker的个数,也就是说,对于每个Partition而言,每个Broker上最多只会有一个Replica,因此可以使用Broker id 指定Partition的Replica。
- 所有Partition的Replica默认情况会均匀分布到所有Broker上。
1.5 ISR机制
同步复制: 只有所有的follower把数据拿过去后才commit,一致性好,可用性不高。
异步复制: 只要leader拿到数据立即commit,等follower慢慢去复制,可用性高,立即返回,一致性差一些
kafka不是完全同步,也不是完全异步,是一种ISR机制:
- leader会维护一个与其基本保持同步的Replica列表,该列表称为ISR(in-sync Replica),每个Partition都会有一个ISR,而且是由leader动态维护
- 如果一个flower比一个leader落后太多(4000条),或者超过一定时间(10秒)未发起数据复制请求,则leader将其重ISR中移除
- 当ISR中所有Replica都向Leader发送ACK时,leader才commit
1.6 leader挂掉
leader挂掉了,从它的follower中选举一个作为leader,并把挂掉的leader从ISR中移除,继续处理数据。
1.7 发送保证
一般情况下存在三种情况:
- At most once 消息可能会丢,但绝不会重复传输
- At least one 消息绝不会丢,但可能会重复传输
- Exactly once 每条消息肯定会被传输一次且仅传输一次
当 producer 向 broker 发送消息时,一旦这条消息被 commit,由于 replication 的存在,它就不会丢。但是如果 producer 发送数据给 broker 后,遇到网络问题而造成通信中断,那 Producer 就无法判断该条消息是否已经 commit。虽然 Kafka 无法确定网络故障期间发生了什么,但是 producer 可以生成一种类似于主键的东西,发生故障时幂等性的重试多次,这样就做到了 Exactly once,但目前还并未实现。所以目前默认情况下一条消息从 producer 到 broker 是确保了 At least once,可通过设置 producer 异步发送实现At most once。
1.8 消费方式
consumer 采用 pull 模式从 broker 中读取数据。
push 模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成 consumer 来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而 pull 模式则可以根据 consumer 的消费能力以适当的速率消费消息。
对于 Kafka 而言,pull 模式更合适,它可简化 broker 的设计,consumer 可自主控制消费消息的速率,同时 consumer 可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。
1.9 消费保证
如果将 consumer 设置为 autocommit,consumer 一旦读到数据立即自动 commit。如果只讨论这一读取消息的过程,那 Kafka 确保了 Exactly once。
但实际使用中应用程序并非在 consumer 读取完数据就结束了,而是要进行进一步处理,而数据处理与 commit 的顺序在很大程度上决定了consumer delivery guarantee:
读完消息先 commit 再处理消息。
这种模式下,如果 consumer 在 commit 后还没来得及处理消息就 crash 了,下次重新开始工作后就无法读到刚刚已提交而未处理的消息,这就对应于 At most once读完消息先处理再 commit。
这种模式下,如果在处理完消息之后 commit 之前 consumer crash 了,下次重新开始工作时还会处理刚刚未 commit 的消息,实际上该消息已经被处理过了。这就对应于 At least once。如果一定要做到 Exactly once,就需要协调 offset 和实际操作的输出。
经典的做法是引入两阶段提交。如果能让 offset 和操作输入存在同一个地方,会更简洁和通用。这种方式可能更好,因为许多输出系统可能不支持两阶段提交。比如,consumer 拿到数据后可能把数据放到 HDFS,如果把最新的 offset 和数据本身一起写到 HDFS,那就可以保证数据的输出和 offset 的更新要么都完成,要么都不完成,间接实现 Exactly once。(目前就 high-level API而言,offset 是存于Zookeeper 中的,无法存于HDFS,而SimpleConsuemr API的 offset 是由自己去维护的,可以将之存于 HDFS 中)
2.0 存储策略
无论消息是否被消费,kafka 都会保留所有消息。有两种策略可以删除旧数据:
- 基于时间:log.retention.hours=168
- 基于大小:log.retention.bytes=1073741824
2.1 consumer API
kafka 提供了两套 consumer API:
- The high-level Consumer API
- The SimpleConsumer API
其中 high-level consumer API 提供了一个从 kafka 消费数据的高层抽象,而 SimpleConsumer API 则需要开发人员更多地关注细节。
2.2 The high-level Consumer API
high-level consumer API 提供了 consumer group 的语义,一个消息只能被 group 内的一个 consumer 所消费,且 consumer 消费消息时不关注 offset, offset 由 zookeeper 保存。
使用 high-level consumer API 可以是多线程的应用,应当注意:
- 如果消费线程大于 patition 数量,则有些线程将收不到消息
- 如果 patition 数量大于线程数,则有些线程多收到多个 patition 的消息
- 如果一个线程消费多个 patition,则无法保证你收到的消息的顺序,而一个 patition 内的消息是有序的
2.3 The SimpleConsumer API
如果你想要对 patition 有更多的控制权,那就应该使用 SimpleConsumer API,比如:
- 多次读取一个消息
- 只消费一个 patition 中的部分消息
- 使用事务来保证一个消息仅被消费一次
但是使用此 API 时,partition、offset、broker、leader 等对你不再透明,需要自己去管理。你需要做大量的额外工作:
- 必须在应用程序中跟踪 offset,从而确定下一条应该消费哪条消息
- 应用程序需要通过程序获知每个 Partition 的 leader 是谁
- 需要处理 leader 的变更
使用 SimpleConsumer API 的一般流程如下:
- 查找到一个“活着”的 broker,并且找出每个 partition 的 leader
- 找出每个 partition 的 follower
- 定义好请求,该请求应该能描述应用程序需要哪些数据
- fetch 数据
- 识别 leader 的变化,并对之作出必要的响应