Java数据结构——堆

2.9 堆

以大顶堆为例,相对于之前的优先级队列,增加了堆化等方法

public class MaxHeap {
    int[] array;
    int size;

    public MaxHeap(int capacity) {
        this.array = new int[capacity];
    }

    /**
     * 获取堆顶元素
     *
     * @return 堆顶元素
     */
    public int peek() {
        return array[0];
    }

    /**
     * 删除堆顶元素
     *
     * @return 堆顶元素
     */
    public int poll() {
        int top = array[0];
        swap(0, size - 1);
        size--;
        down(0);
        return top;
    }

    /**
     * 删除指定索引处元素
     *
     * @param index 索引
     * @return 被删除元素
     */
    public int poll(int index) {
        int deleted = array[index];
        swap(index, size - 1);
        size--;
        down(index);
        return deleted;
    }

    /**
     * 替换堆顶元素
     * @param replaced 新元素
     */
    public void replace(int replaced) {
        array[0] = replaced;
        down(0);
    }

    /**
     * 堆的尾部添加元素
     *
     * @param offered 新元素
     * @return 是否添加成功
     */
    public boolean offer(int offered) {
        if (size == array.length) {
            return false;
        }
        up(offered);
        size++;
        return true;
    }

    // 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶
    private void up(int offered) {
        int child = size;
        while (child > 0) {
            int parent = (child - 1) / 2;
            if (offered > array[parent]) {
                array[child] = array[parent];
            } else {
                break;
            }
            child = parent;
        }
        array[child] = offered;
    }

    public MaxHeap(int[] array) {
        this.array = array;
        this.size = array.length;
        heapify();
    }

    // 建堆
    private void heapify() {
        // 如何找到最后这个非叶子节点  size / 2 - 1
        for (int i = size / 2 - 1; i >= 0; i--) {
            down(i);
        }
    }

    // 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大
    private void down(int parent) {
        int left = parent * 2 + 1;
        int right = left + 1;
        int max = parent;
        if (left < size && array[left] > array[max]) {
            max = left;
        }
        if (right < size && array[right] > array[max]) {
            max = right;
        }
        if (max != parent) { // 找到了更大的孩子
            swap(max, parent);
            down(max);
        }
    }

    // 交换两个索引处的元素
    private void swap(int i, int j) {
        int t = array[i];
        array[i] = array[j];
        array[j] = t;
    }

    public static void main(String[] args) {

        int[] array = {1, 2, 3, 4, 5, 6, 7};
        MaxHeap maxHeap = new MaxHeap(array);
        System.out.println(Arrays.toString(maxHeap.array));
    }
}

建堆

Floyd 建堆算法作者(也是之前龟兔赛跑判环作者):

image.png
  1. 找到最后一个非叶子节点
  2. 从后向前,对每个节点执行下潜

一些规律

  • 一棵满二叉树节点个数为 2^h-1,如下例中高度 h=3 节点数是 2^3-1=7
  • 非叶子节点范围为 [0, size/2-1]

算法时间复杂度分析

image.png

下面看交换次数的推导:设节点高度为 3

本层节点数 高度 下潜最多交换次数(高度-1)
4567 这层 4 1 0
23这层 2 2 1
1这层 1 3 2

每一层的交换次数为:节点个数*此节点交换次数,总的交换次数为
$$
\begin{aligned}
& 4 * 0 + 2 * 1 + 1 * 2 \

& \frac{8}{2}0 + \frac{8}{4}1 + \frac{8}{8}*2 \

& \frac{8}{2^1}0 + \frac{8}{2^2}1 + \frac{8}{2^3}*2\

\end{aligned}
即
\sum_{i=1}{h}(\frac{2h}{2^i}*(i-1))
$$
https://www.wolframalpha.com/ 输入

Sum[\(40)Divide[Power[2,x],Power[2,i]]*\(40)i-1\(41)\(41),{i,1,x}]

推导出
2^h -h -1
其中 2^h \approx nh \approx \log_2{n},因此有时间复杂度 O(n)

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 堆 堆是一棵完全二叉树,如下图,也是一个优先队列。 小顶堆:所有节点的左右孩子节点都小于或者等于父节点 大顶堆:所...
    守敬阅读 2,839评论 2 1
  • 课程介绍 先修课:概率统计,程序设计实习,集合论与图论 后续课:算法分析与设计,编译原理,操作系统,数据库概论,人...
    ShellyWhen阅读 2,343评论 0 3
  • 今天我们来学习堆和堆排序。 什么是堆 堆是一种特殊的树,满足以下两点要求: 堆是一个完全二叉树。 堆中每个节点的值...
    大杂草阅读 848评论 0 0
  • 特点 堆是一种特殊树 前提条件 堆是一个完全二叉树 完全二叉树: 除了最后一层,其他层的节点个数都是满的,...
    小_小_2019阅读 855评论 0 1
  • (2020.02.07, 2022.05.04补细节)树结构在数据库设计中扮演重要作用。 基本概念: 树叶和分支节...
    Mc杰夫阅读 287评论 0 0