复现maml论文模型-2

跑回归代码
代码地址:https://github.com/mari-linhares/tensorflow-maml/blob/master/maml.ipynb
我是在我本地自己照着敲了一遍这个代码,并且实践了论文中回归部分的对比实验。
接下来,记录一下我对代码的理解
1.需要一个生成正弦曲线数据点的类

class SinusoidGenerator():
    '''
      振幅 [0.1, 5.0]
      相位 [0, Π]
    '''
    def __init__(self, K=10, amplitude=None, phase=None):
        '''
          K: 正弦曲线的数据点的个数
          amplitude: 振幅,[0.1, 5,0]任一数值
          phase: 相位, [0, Π] 任一数值
        '''
        self.K = K
        self.amplitude = amplitude if amplitude else np.random.uniform(0.1, 5.0)
        self.phase = phase if phase else np.random.uniform(0, np.pi)
        self.sampled_points = None
        self.x = self._sample_x()
    
    def _sample_x(self):
        # 取的数据点在[-5, 5]之间
        return np.random.uniform(-5, 5, self.K)
    
    def f(self, x):
        '''
          求正弦曲线的函数值
        '''
        return self.amplitude * np.sin(x - self.phase)
    
    def batch(self, x=None, force_new=False):
        '''
          生成一个正弦曲线对应的K个数据点
          x: x值.
          force_new: instead of using 'x'.
        '''
        if x is None:
            if force_new:
                x = self._sample_x()
            else:
                x = self.x
        y = self.f(x)
        return x[:, None], y[:, None]
    
    def equally_spaced_samples(self, K=None):
        '''
          生成一个正弦曲线上等间隔的K个数据点
        '''
        if K is None:
            K = self.K
        return self.batch(x=np.linspace(-5, 5, K))

def plot(data, *args, **kwargs):
    x, y = data
    return plt.plot(x, y, *args, **kwargs)

# 可视化三条正弦曲线,每条正弦曲线上有100个点
for _ in range(3):
    plt.title('Sinusoid examples')
    plot(SinusoidGenerator(K=100).equally_spaced_samples())
plt.show()

2.需要一个制造训练集和测试集的方法

def generate_dataset(K, train_size=20000, test_size=10):
    def _generate_dataset(size):
        return [SinusoidGenerator(K=K) for _ in range(size)]
    return _generate_dataset(train_size), _generate_dataset(test_size)

# 训练集有20000个,即有20000个正弦曲线,每个正弦曲线给出10个点;测试集有10个,每个也有10个点
train_ds, test_ds = generate_dataset(K=10)

3.回归模型(上一节提到的“基础模型”)

class SineModel(keras.Model):
    '''
      回归模型是一个神经网络模型,有两个隐藏层,大小为40,具有ReLU非线性
    '''
    def __init__(self):
        super().__init__()
        self.hidden1 = keras.layers.Dense(40, input_shape=(1,))
        self.hidden2 = keras.layers.Dense(40)
        self.out = keras.layers.Dense(1)
    
    def forward(self, x):
        x = keras.activations.relu(self.hidden1(x))
        x = keras.activations.relu(self.hidden2(x))
        x = self.out(x)
        return x

4.一些做计算、格式化数据的函数

def np_to_tensor(list_of_numpy_objs):
    return (tf.convert_to_tensor(obj) for obj in list_of_numpy_objs)

def copy_model(model, x):
    '''
    x:输入示例,这用于运行前向传递,以便将图的权重作为变量添加。
    '''
    copied_model = SineModel()
    
    copied_model.forward(tf.convert_to_tensor(x))
    # 获取训练之后的权重值
    copied_model.set_weights(model.get_weights())
    return copied_model

def loss_function(pred_y, y):
    # 计算均方误差(同maml论文),keras_backend.mean(x):具有x元素均值的张量
    return keras_backend.mean(keras.losses.mean_squared_error(y, pred_y))

def compute_loss(model, x, y, loss_fn=loss_function):
    # 计算经过两个隐藏层后的值
    logits = model.forward(x)
    # y是真实值,mse是10个点的均方误差和
    mse = loss_fn(y, logits)
    return mse, logits

def apply_gradients(optimizer, gradients, variables):
    # 更新model的权重值,Update the weights of the model.
    optimizer.apply_gradients(zip(gradients, variables))

5.重头戏:maml模型代码
贴出原论文中的伪代码,对应看实现


maml伪代码.png
# 学习率为0.01,元学习模型优化器Adam(同maml论文)
def train_maml(model, epochs, dataset, lr_inner=0.01, batch_size=1, log_steps=1000):
    optimizer = keras.optimizers.Adam()
    
    # Step 2: instead of checking for convergence, we train for a number of epochs
    for _ in range(epochs):
        total_loss = 0
        losses = []
        start = time.time()
        # Step 3 and 4
        # random.sample()感觉可以做到一个打乱的效果
        for i, t in enumerate(random.sample(dataset, len(dataset))):
            x, y = np_to_tensor(t.batch())
            model.forward(x)  # run forward pass to initialize weights
            with tf.GradientTape() as test_tape:
                # test_tape.watch(model.trainable_variables)
                # Step 5
                with tf.GradientTape() as train_tape:
                    train_loss, _ = compute_loss(model, x, y)
                # Step 6
                gradients = train_tape.gradient(train_loss, model.trainable_variables)
                k = 0
                model_copy = copy_model(model, x)
                # model有两层,model.layers 是包含模型网络层的展平列表
                for j in range(len(model_copy.layers)):
                    # layer.weights包含kernel和bias,subtract减;multiply乘
                    model_copy.layers[j].kernel = tf.subtract(model.layers[j].kernel,
                                tf.multiply(lr_inner, gradients[k]))
                    model_copy.layers[j].bias = tf.subtract(model.layers[j].bias,
                                tf.multiply(lr_inner, gradients[k+1]))
                    k += 2
                # Step 8,根据训练得到的模型计算损失
                test_loss, logits = compute_loss(model_copy, x, y)
            # Step 8,更新元学习模型参数
            gradients = test_tape.gradient(test_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(gradients, model.trainable_variables))
            
            # Logs
            total_loss += test_loss
            loss = total_loss / (i+1.0)
            losses.append(loss)
            
            if i % log_steps == 0 and i > 0:
                print('Step {}: loss = {}, Time to run {} steps = {}'.format(i, loss, log_steps, time.time() - start))
                start = time.time()
        plt.plot(losses)
        plt.show()

6.根据原论文中训练的参数进行训练,K=5,K=10


原论文实验对比.png

开始训练

# K=10
maml = SineModel()
# 训练集有20000个,即有20000个正弦曲线,每个正弦曲线给出10个点
train_maml(maml, 1, train_ds)
# K=5
maml_five = SineModel()
train_ds_five, test_ds_five = generate_dataset(K=5)
train_maml(maml_five, 1, train_ds_five)

测试代码

# (x,y)10个点,(x_test,y_test)100个点
def eval_sine_test(model, optimizer, x, y, x_test, y_test, num_steps=(0, 1, 10)):
    '''
    评估模型如何拟合“拟合”步骤的曲线训练
    Args:
        x,y用来微调模型参数
        x_test,y_test: 模拟拟合过程
        num_steps: 参数更新次数
    '''
    fit_res = []
    
    tensor_x_test, tensor_y_test = np_to_tensor((x_test, y_test))
    
    # 测试时更新10次,分别打印0次、1次和10次的拟合状态
    # If 0 in fits we log the loss before any training
    if 0 in num_steps:
        loss, logits = compute_loss(model, tensor_x_test, tensor_y_test)
        fit_res.append((0, logits, loss))
    # step是1~10
    for step in range(1, np.max(num_steps) + 1):
        # 这一步在fine-tune
        train_batch(x, y, model, optimizer)
        # logits:经过两个隐藏层后的值
        loss, logits = compute_loss(model, tensor_x_test, tensor_y_test)
        # 记录step=1和step=10
        if step in num_steps:
            fit_res.append(
                (
                    step, 
                    logits,
                    loss
                )
            )
    return fit_res

def eval_sinewave_for_test(model, sinusoid_generator=None, num_steps=(0, 1, 10), lr=0.01, plot=True):
    '''
        model: Already trained model.
        sinusoid_generator: A sinusoidGenerator instance.
        num_steps: Number of training steps to be logged.
        lr: Learning rate used for training on the test data.
        plot: If plot is True than it plots how the curves are fitted along
            `num_steps`.
    Returns:
        The fit results. A list containing the loss, logits and step. For
        every step at `num_steps`.
    '''
    
    if sinusoid_generator is None:
        sinusoid_generator = SinusoidGenerator(K=10)
        
    # generate equally spaced samples for ploting,100个点
    x_test, y_test = sinusoid_generator.equally_spaced_samples(100)
    
    # batch used for training,10个点,和上面是同一条正弦曲线
    x, y = sinusoid_generator.batch()
    
    # copy model so we can use the same model multiple times
    copied_model = copy_model(model, x)
    
    # use SGD for this part of training as described in the paper
    optimizer = keras.optimizers.SGD(learning_rate=lr)
    
    # run training and log fit results
    fit_res = eval_sine_test(copied_model, optimizer, x, y, x_test, y_test, num_steps)
    
    # plot
    train, = plt.plot(x, y, '^')
    ground_truth, = plt.plot(x_test, y_test)
    plots = [train, ground_truth]
    legend = ['Training Points', 'True Function']
    for n, res, loss in fit_res:
        cur, = plt.plot(x_test, res[:, 0], '--')
        plots.append(cur)
        legend.append(f'After {n} Steps')
    plt.legend(plots, legend)
    plt.ylim(-5, 5)
    plt.xlim(-6, 6)
    if plot:
        plt.show() 
    return fit_res

def compute_gradients(model, x, y, loss_fn=loss_function):
    with tf.GradientTape() as tape:
        loss, _ = compute_loss(model, x, y, loss_fn)
    # tape.gradient(y,x),求y在x处的导数值,model.trainable_variables,[w,b]权重值和偏置
    return tape.gradient(loss, model.trainable_variables), loss


def apply_gradients(optimizer, gradients, variables):
    # 更新model的权重值,Update the weights of the model.
    optimizer.apply_gradients(zip(gradients, variables))
    
def train_batch(x, y, model, optimizer):
    tensor_x, tensor_y = np_to_tensor((x, y))
    gradients, loss = compute_gradients(model, tensor_x, tensor_y)
    apply_gradients(optimizer, gradients, model.trainable_variables)
    return loss

开始测试

# K=10, test_ds有10个正弦曲线,每个有10个点,np.random.randint(),从0~10任挑1个数,即任挑1个正弦曲线
for index in np.random.randint(0, len(test_ds), size=1):
    eval_sinewave_for_test(maml, test_ds[index])

# K=5
for index in np.random.randint(0, len(test_ds), size=1):
    eval_sinewave_for_test(maml_five, test_ds_five[index])

至此,maml模型训练和测试结束,下面是maml模型的对比对象,pretrained模型
7.原论文将maml模型和pretrained模型进行比较
预训练模型是直接使用用训练集训练出来的模型(参数),将模型fine-tune给测试集使用。所以首先要训练出一个回归模型
训练回归模型

def train_model(dataset, epochs=1, lr=0.01, log_steps=1000):
    model = SineModel()
    optimizer = keras.optimizers.Adam(learning_rate=lr)
    for epoch in range(epochs):
        losses = []
        total_loss = 0
        start = time.time()
        for i, sinusoid_generator in enumerate(dataset):
            x, y = sinusoid_generator.batch()
            loss = train_batch(x, y, model, optimizer)
            total_loss += loss
            curr_loss = total_loss / (i + 1.0)
            losses.append(curr_loss)
            
            if i % log_steps == 0 and i > 0:
                print('Step {}: loss = {}, Time to run {} steps = {:.2f} seconds'.format(
                    i, curr_loss, log_steps, time.time() - start))
                start = time.time()
        plt.plot(losses)
        plt.title('Loss Vs Time steps')
        plt.show()
    return model

# 开始训练
# K=10,学习率为0.02
neural_net = train_model(train_ds, lr=0.02)
# 按原论文中的参数K=5时,学习率为0.01
neural_net_five = train_model(train_ds_five)

预训练模型的参数的更新过程(李宏毅老师的课程)


预训练模型的参数更新.png

开始测试

# K=10
for index in np.random.randint(0, len(test_ds), size=1):
    eval_sinewave_for_test(neural_net, test_ds[index])
# K=5
for index in np.random.randint(0, len(test_ds), size=1):
    eval_sinewave_for_test(neural_net_five, test_ds_five[index])

8.损失对比

# 比较不同参数更新次数,模型的loss
def compare_maml_and_neural_net(maml, neural_net, sinusoid_generator, num_steps=list(range(10)),
                                intermediate_plot=True, marker='x', linestyle='--'):
    '''
    Args:
        maml: An already trained MAML.
        neural_net: An already trained neural net.
        num_steps: Number of steps to be logged.
        intermediate_plot: If True plots intermediate plots from
            `eval_sinewave_for_test`.
        marker: Marker used for plotting.
        linestyle: Line style used for plotting.
    '''
    if intermediate_plot:
        print('MAML')
    # maml学到了初始化值,从拥有初始化值开始求值,模拟拟合过程
    fit_maml = eval_sinewave_for_test(maml, sinusoid_generator, plot=intermediate_plot)
    if intermediate_plot:
        print('Neural Net')
    fit_neural_net = eval_sinewave_for_test(neural_net, sinusoid_generator, plot=intermediate_plot)
    # oracle为基准,损失为0
    fit_oracle = []
    for i in (0, 1, 10):
        fit_oracle.append(
                    (
                        i, 
                        0,
                        0
                    )
                )
    
    fit_res = {'MAML': fit_maml, 'Neural Net': fit_neural_net, 'oracle': fit_oracle}
    
    legend = []
    for name in fit_res:
        x = []
        y = []
        for n, _, loss in fit_res[name]:
            x.append(n)
            y.append(loss)
        plt.plot(x, y, marker=marker, linestyle=linestyle)
        plt.xticks(num_steps)
        legend.append(name)
    plt.legend(legend)
    plt.show()

index = np.random.choice(range(len(test_ds)))
compare_maml_and_neural_net(maml, neural_net, test_ds[index])
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351