线程池就是限制系统中执行线程的数量。我们可以根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列。
为什么要用线程池:
- 1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
- 2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。
1.线程池继承体系
如下图所示,Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService。
2.Executors
要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池。
2.1 newSingleThreadExecutor
创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
源码:
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
实例:
public classMyThread extends Thread {
@Override
publicvoid run() {
System.out.println(Thread.currentThread().getName() + "正在执行。。。");
}
}
publicclassTestSingleThreadExecutor {
publicstaticvoid main(String[] args) {
//创建一个可重用固定线程数的线程池
ExecutorService pool = Executors. newSingleThreadExecutor();
//创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口
Thread t1 = new MyThread();
Thread t2 = new MyThread();
Thread t3 = new MyThread();
Thread t4 = new MyThread();
Thread t5 = new MyThread();
//将线程放入池中进行执行
pool.execute(t1);
pool.execute(t2);
pool.execute(t3);
pool.execute(t4);
pool.execute(t5);
//关闭线程池
pool.shutdown();
}
}
运行结果:
pool-1-thread-1正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-1正在执行。。。
2.2 newFixedThreadPool
创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
源码:
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
实例:
publicclass TestFixedThreadPool {
publicstaticvoid main(String[] args) {
//创建一个可重用固定线程数的线程池
ExecutorService pool = Executors.newFixedThreadPool(2);
//创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口
Thread t1 = new MyThread();
Thread t2 = new MyThread();
Thread t3 = new MyThread();
Thread t4 = new MyThread();
Thread t5 = new MyThread();
//将线程放入池中进行执行
pool.execute(t1);
pool.execute(t2);
pool.execute(t3);
pool.execute(t4);
pool.execute(t5);
//关闭线程池
pool.shutdown();
}
}
运行结果:
pool-1-thread-1正在执行。。。
pool-1-thread-2正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-2正在执行。。。
pool-1-thread-1正在执行。。。
2.3 newCachedThreadPool
创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
源码:
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
实例:
publicclass TestCachedThreadPool {
publicstaticvoid main(String[] args) {
//创建一个可重用固定线程数的线程池
ExecutorService pool = Executors.newCachedThreadPool();
//创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口
Thread t1 = new MyThread();
Thread t2 = new MyThread();
Thread t3 = new MyThread();
Thread t4 = new MyThread();
Thread t5 = new MyThread();
//将线程放入池中进行执行
pool.execute(t1);
pool.execute(t2);
pool.execute(t3);
pool.execute(t4);
pool.execute(t5);
//关闭线程池
pool.shutdown();
}
}
运行结果:
pool-1-thread-2正在执行。。。
pool-1-thread-4正在执行。。。
pool-1-thread-3正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-5正在执行。。。
2.4 newScheduledThreadPool
创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
源码:
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
实例:
publicclass TestScheduledThreadPoolExecutor {
publicstaticvoid main(String[] args) {
ScheduledThreadPoolExecutor exec = new ScheduledThreadPoolExecutor(1);
exec.scheduleAtFixedRate(new Runnable() {//每隔一段时间就触发异常
@Override
publicvoid run() {
//throw new RuntimeException();
System.out.println("================");
}
}, 1000, 5000, TimeUnit.MILLISECONDS);
exec.scheduleAtFixedRate(new Runnable() {//每隔一段时间打印系统时间,证明两者是互不影响的
@Override
publicvoid run() {
System.out.println(System.nanoTime());
}
}, 1000, 2000, TimeUnit.MILLISECONDS);
}
}
运行结果:
================
8384644549516
8386643829034
8388643830710
================
8390643851383
8392643879319
8400643939383
3.ThreadPoolExecutor
从上面Executors类创建几种线程池的源码中可以发现,底层调用了ThreadPoolExecutor类的构造方法。下面就具体的看一看这个类的相关源码。
3.1 构造方法
/**
* 用给定的参数创建一个线程池
*
* @param corePoolSize 池中所保存的线程数,包括空闲线程。
* @param maximumPoolSize 池中允许的最大线程数。
* @param keepAliveTime 当线程数大于核心时,此为终止前多余的空闲线 程等待新任务的最长时间。
* @param unit 参数的时间单位。
* @param workQueue 执行前用于保持任务的队列。此队列仅保持由 execute方法提交的Runnable任务。
* @param threadFactory 执行程序创建新线程时使用的工厂。
* @param handler 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
3.2.execute方法
execute方法里面的代码逻辑对应着用户提交一个线程时的执行流程,如下流程图。
源码:
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
3.3 BlockingQueue<Runnable> 参数
线程池的实现,队列起着至关重要的作用。它也是ThreadPoolExecutor构造方法里面的参数之间。从上面的excute执行逻辑知道当核心线程已满,如果等待队列未满,我们就可以把线程任务放到队列中去,当线程池中有空闲线程就会执行该任务。
3.3.1 类图:
ArrayBlockingQueue--声明时就确定大小的队列,fifo方式。(方法基本和接口一致,没有特别要说明的内容)
LinkedBlockingQueue--链表实现的queue-remove效率会高一些
PriorityBlockingQueue--优先级队列
SynchronousQueue--阻塞队列,必须拿走一个才能放进来一个,也就是最多只有一个~
DelayQuque--就是放进去的内容,延迟时间到了后才可以获得
LinkedBlockDeque--双端队列 :offerFirst/offerLast,pollFirst/pollLast
LinkedTransferQueue--类似LinkedUnBlockedQueue,其实就是transfer方法有人再等待队列内容就直接给他这个元素,没人在等就放在队列里面。也就是效率会更高。
3.3.2 排队的三种通用策略:
- 直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
- 无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
- 有界队列。当使用有限的 maximumPoolSizes时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。
3.3.3 BlockingQueue的选择。
- 例子一:使用直接提交策略,也即SynchronousQueue。
首先SynchronousQueue是无界的,也就是说他存数任务的能力是没有限制的,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走后才能继续添加。在这里不是核心线程便是新创建的线程,但是我们试想一样下,下面的场景。
new ThreadPoolExecutor(
2, 3, 30, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
new RecorderThreadFactory("CookieRecorderPool"),
new ThreadPoolExecutor.CallerRunsPolicy());
当核心线程已经有2个正在运行.
此时继续来了一个任务(A),根据前面介绍的“如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列,而不添加新的线程。”,所以A被添加到queue中。
又来了一个任务(B),且核心2个线程还没有忙完,OK,接下来首先尝试1中描述,但是由于使用的SynchronousQueue,所以一定无法加入进去。
此时便满足了上面提到的“如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。”,所以必然会新建一个线程来运行这个任务。
暂时还可以,但是如果这三个任务都还没完成,连续来了两个任务,第一个添加入queue中,后一个呢?queue中无法插入,而线程数达到了maximumPoolSize,所以只好执行异常策略了。
所以在使用SynchronousQueue通常要求maximumPoolSize是无界的,这样就可以避免上述情况发生(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。
什么意思?如果你的任务A1,A2有内部关联,A1需要先运行,那么先提交A1,再提交A2,当使用SynchronousQueue我们可以保证,A1必定先被执行,在A1么有被执行前,A2不可能添加入queue中。
- 例子二:使用无界队列策略,即LinkedBlockingQueue
这个就拿newFixedThreadPool来说,根据前文提到的规则:
如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。那么当任务继续增加,会发生什么呢?
如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。OK,此时任务变加入队列之中了,那什么时候才会添加新线程呢?
如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。这里就很有意思了,可能会出现无法加入队列吗?不像SynchronousQueue那样有其自身的特点,对于无界队列来说,总是可以加入的(资源耗尽,当然另当别论)。换句说,永远也不会触发产生新的线程!corePoolSize大小的线程数会一直运行,忙完当前的,就从队列中拿任务开始运行。所以要防止任务疯长,比如任务运行的实行比较长,而添加任务的速度远远超过处理任务的时间,而且还不断增加,不一会儿就爆了。 - 例子三:有界队列,使用ArrayBlockingQueue。
这个是最为复杂的使用,所以JDK不推荐使用也有些道理。与上面的相比,最大的特点便是可以防止资源耗尽的情况发生。
举例来说,请看如下构造方法:
new ThreadPoolExecutor(
2, 4, 30, TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(2),
new RecorderThreadFactory("CookieRecorderPool"),
new ThreadPoolExecutor.CallerRunsPolicy());
假设,所有的任务都永远无法执行完。
对于首先来的A,B来说直接运行,接下来,如果来了C,D,他们会被放到queue中,如果接下来再来E,F,则增加线程运行E,F。但是如果再来任务,队列无法再接受了,线程数也到达最大的限制了,所以就会使用拒绝策略来处理。
3.4 keepAliveTime 参数
由上可知,ThreadPoolExecutor中额定的“工人”数量由corePoolSize决定,当任务数量超过额定工人数量时,将任务缓存在BlockingQueue之中,当发现如果连queue中也放不下时(可能是因为使用有界queue,也可能是使用SynchronousQueue),ThreadPoolExecutor会请求“老板”再派几个“工人”过来。
接下来发生的事情有两种情况:
- 任务不再过来了 - keepAliveTime
- 任务仍然继续过来 - RejectedExecutionHandler
对于keepAliveTime参数,jdk中的解释是:当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
有点拗口,其实这个不难理解,在使用了“池”的应用中,大多都有类似的参数需要配置。比如数据库连接池,DBCP中的maxIdle,minIdle参数。
什么意思?接着上面的解释,后来向老板派来的工人始终是“借来的”,俗话说“有借就有还”,但这里的问题就是什么时候还了,如果借来的工人刚完成一个任务就还回去,后来发现任务还有,那岂不是又要去借?这一来一往,老板肯定头也大死了。
合理的策略:既然借了,那就多借一会儿。直到“某一段”时间后,发现再也用不到这些工人时,便可以还回去了。这里的某一段时间便是keepAliveTime的含义,TimeUnit为keepAliveTime值的度量。
总结:
keepAliveTime和maximumPoolSize及BlockingQueue的类型均有关系。如果BlockingQueue是无界的,那么永远不会触发maximumPoolSize,自然keepAliveTime也就没有了意义。
反之,如果核心数较小,有界BlockingQueue数值又较小,同时keepAliveTime又设的很小,如果任务频繁,那么系统就会频繁的申请回收线程。
3.5 RejectedExecutionHandler
即拒绝策略,当即使向老板借了工人,但是任务还是继续过来,还是忙不过来,这时整个队伍只好拒绝接受了。
RejectedExecutionHandler接口提供了对于拒绝任务的处理的自定方法的机会。在ThreadPoolExecutor中已经默认包含了4中策略,因为源码非常简单,这里直接贴出来。
3.5 .1 CallerRunsPolicy
线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。
public static class CallerRunsPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code CallerRunsPolicy}.
*/
public CallerRunsPolicy() { }
/**
* Executes task r in the caller's thread, unless the executor
* has been shut down, in which case the task is discarded.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
}
这个策略显然不想放弃执行任务。但是由于池中已经没有任何资源了,那么就直接使用调用该execute的线程本身来执行。
3.5 .2 AbortPolicy
处理程序遭到拒绝将抛出运行时 RejectedExecutionException
public static class AbortPolicy implements RejectedExecutionHandler {
/**
* Creates an {@code AbortPolicy}.
*/
public AbortPolicy() { }
/**
* Always throws RejectedExecutionException.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
* @throws RejectedExecutionException always
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}
这种策略直接抛出异常,丢弃任务。
3.5 .3 DiscardPolicy
不能执行的任务将被删除
public static class DiscardPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code DiscardPolicy}.
*/
public DiscardPolicy() { }
/**
* Does nothing, which has the effect of discarding task r.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
}
这种策略和AbortPolicy几乎一样,也是丢弃任务,只不过他不抛出异常。
3.5 .4 DiscardOldestPolicy
如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code DiscardOldestPolicy} for the given executor.
*/
public DiscardOldestPolicy() { }
/**
* Obtains and ignores the next task that the executor
* would otherwise execute, if one is immediately available,
* and then retries execution of task r, unless the executor
* is shut down, in which case task r is instead discarded.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
}
}
}
该策略就稍微复杂一些,在pool没有关闭的前提下首先丢掉缓存在队列中的最早的任务,然后重新尝试运行该任务。这个策略需要适当小心。
设想:如果其他线程都还在运行,那么新来任务踢掉旧任务,缓存在queue中,再来一个任务又会踢掉queue中最老任务。