Abstract
- 低温胁迫增加了多酚类物质的含量,特别是木质素,可以保护烟草抵抗低温胁迫;
- 为了阐明关键代谢物,特别是木质素的分子生物合成机制,对常温和冷冻处理下烟草叶片进行了rna测序和UHPLC-QTOF M检测;
- 转录组产生40 million原始数据;
- 在9个样本中,代谢组学分析共鉴定出97种编码酶,它们在与多酚生物合成相关的关键步骤中发挥作用,其中42种代谢产物也位于其中;
- 代谢和转录数据的综合分析表明,大多数与木质素生物合成有关的中间代谢物和酶是在叶片在低温胁迫下合成的,这表明,木质素生物合成在响应烟草叶片冷胁迫中起了重要作用;
- 查尔酮合酶基因的冷不敏感性可能是前体物质在低温胁迫下合成类黄酮物质的重要限速因子;
- 低温胁迫下苯丙氨酸解氨酶(pal)、羟基肉桂酰转移酶(hct)和肉桂醇脱氢酶(cad)的表达上调是提高木质素合成的关键;
Introduction
- 植物响应低温胁迫的机制
- 香料和香味成分通过苯丙酸途径(phenylpropanoid pathways)生物合成
- 植物多酚是通过苯丙酸途径产生的一大类次生代谢产物,具有重要的功能
- **莽草酸途径(shikimate pathway)合成苯丙氨酸(phenylalanine),苯丙氨酸是苯丙酸途径的重要起始物质;
- 苯丙氨酸被转化成一系列分子,包括木质素、酚酸(如苯甲酸和羟基肉桂酸)和类黄酮(如黄酮醇和硫氰酸)**
- 木质素的合成和功能
风味物质
调控风味的基因
影响风味的其他因素
Material and methods
- 7叶阶段的幼苗作为实验对象,取上部第二片叶子,三个样品混为一个样;
- RNA提取,cDNA翻转,转录组测序;
- 比对参考基因组和注释的基因
- 基因表达水平的量化及差异表达分析,FPKM>1的检测基因转录活性,DESeq包,p-value<0.01,log2>3或<-3;
- 差异表达基因的KEGG富集分析;KOBAS
- RT-PCR验证RNA-seq结果;actin
- 代谢组样品准备和提取:冷冻干燥;
- 总多酚含量的测定
- 木质素、类黄酮物质、总酚含量的测定采用试剂盒;紫外分光光度计测定绿原酸的含量(对照为50%甲醇,波长327mm);
Result
低温处理和正常处理下烟叶转录组文库的构建及功能分析:81.32% uniquely mapped
-
正常和低温处理下烟叶基因表达谱的比较分析
|log2 fold change|>1、P-value<0.01 鉴定为DEGs
The relationships between different DEG groups were displayed as Venn diagrams
-
Hierarchical clustering analysis of DEGs among different treatments showed that the expression patterns of the chilling treatment were highly distinct from those of thenormal treatment
- 正常和低温处理下烟叶的代谢组学分析
- 基因差异表达与代谢产物积累
- 正常和低温处理下烟叶中的多酚
Conclusion
- polyphenols are the most common metabolites produced by phenylalanine metabolism, and lignin synthesis plays an important role in the response of tobacco leaves to cold temperature.
- The coldinsensitivity of CHS genes might be considered an important rate-limiting factor in the process of precursor substance flow to lignin synthesis rather than flavonoid biosynthesis under chilling stress.
- Furthermore, the upregulated expression of PAL (Gene 15825), HCT (Gene 34 078 and Gene 76 735) and CAD (Gene 66 975) under chilling stress is the key to increasing lignin synthesis.
Reference
Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. 2018 Functional Plant Biology