OpenCV:边缘检测---(8)

Canny边缘检测方法常被誉为边缘检测的最优方法,废话不多说,先看个例子:

import cv2
import numpy as np

img = cv2.imread('../data/lena.pgm', 0)
edges = cv2.Canny(img, 30, 70)  # canny边缘检测

cv2.imshow('canny', np.hstack((img, edges)))
cv2.waitKey(0)

cv2.Canny()进行边缘检测,参数2、3表示最低、高阈值,下面来解释下具体原理。

经验之谈:之前我们用低通滤波的方式模糊了图片,那反过来,想得到物体的边缘,就需要用到高通滤波。推荐先阅读:番外篇:图像梯度

Canny边缘检测

Canny边缘提取的具体步骤如下:

1,使用5×5高斯滤波消除噪声:

边缘检测本身属于锐化操作,对噪点比较敏感,所以需要进行平滑处理。

K=\frac{1}{256}\left[ \begin{matrix} 1 & 4 & 6 & 4 & 1 \newline 4 & 16 & 24 & 16 & 4 \newline 6 & 24 & 36 & 24 & 6 \newline 4 & 16 & 24 & 16 & 4 \newline 1 & 4 & 6 & 4 & 1 \end{matrix} \right]

2,计算图像梯度的方向:

首先使用Sobel算子计算两个方向G_y和G_x上的梯度,然后算出梯度的方向:
\theta=\arctan(\frac{G_y}{G_x})

保留这四个方向的梯度:0°/45°/90°/135°,有什么用呢?我们接着看。

3,取局部极大值:

梯度其实已经表示了轮廓,但为了进一步筛选,可以在上面的四个角度方向上再取局部极大值:


比如,A点在45°方向上大于B/C点,那就保留它,把B/C设置为0。

4,滞后阈值:

经过前面三步,就只剩下0和可能的边缘梯度值了,为了最终确定下来,需要设定高低阈值:

  • 像素点的值大于最高阈值,那肯定是边缘(上图A)
  • 同理像素值小于最低阈值,那肯定不是边缘
  • 像素值介于两者之间,如果与高于最高阈值的点连接,也算边缘,所以上图中C算,B不算

Canny推荐的高低阈值比在2:1到3:1之间。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 来源于:边缘检测之Canny - TechYan - 博客园 1. 写在前面 最近在做边缘检测方面的一些工作,在网...
    鲜人掌阅读 933评论 0 2
  • 1、阈值分割 1.1 简介 图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成...
    木夜溯阅读 22,713评论 9 15
  • 因为年轻 所以我们有梦想 关于文学 关于爱情 关于穿越世界的旅行 广州,我来了。 一直以来,我对广州就充满好奇,这...
    海绵饼干阅读 1,172评论 6 11
  • 七绝•鸿雁思归 林忠顺 一股寒流落玉冰,冰肌柔骨沥沙汀。 汀葭鸿雁思回北,北至佳人宛在舲。 注:中华新韵•十一庚(...
    林忠顺阅读 630评论 2 16