Canny边缘检测方法常被誉为边缘检测的最优方法,废话不多说,先看个例子:
import cv2
import numpy as np
img = cv2.imread('../data/lena.pgm', 0)
edges = cv2.Canny(img, 30, 70) # canny边缘检测
cv2.imshow('canny', np.hstack((img, edges)))
cv2.waitKey(0)
cv2.Canny()
进行边缘检测,参数2、3表示最低、高阈值,下面来解释下具体原理。
经验之谈:之前我们用低通滤波的方式模糊了图片,那反过来,想得到物体的边缘,就需要用到高通滤波。推荐先阅读:番外篇:图像梯度。
Canny边缘检测
Canny边缘提取的具体步骤如下:
1,使用5×5高斯滤波消除噪声:
边缘检测本身属于锐化操作,对噪点比较敏感,所以需要进行平滑处理。
2,计算图像梯度的方向:
首先使用Sobel算子计算两个方向上的梯度,然后算出梯度的方向:
保留这四个方向的梯度:0°/45°/90°/135°,有什么用呢?我们接着看。
3,取局部极大值:
梯度其实已经表示了轮廓,但为了进一步筛选,可以在上面的四个角度方向上再取局部极大值:
比如,A点在45°方向上大于B/C点,那就保留它,把B/C设置为0。
4,滞后阈值:
经过前面三步,就只剩下0和可能的边缘梯度值了,为了最终确定下来,需要设定高低阈值:
- 像素点的值大于最高阈值,那肯定是边缘(上图A)
- 同理像素值小于最低阈值,那肯定不是边缘
- 像素值介于两者之间,如果与高于最高阈值的点连接,也算边缘,所以上图中C算,B不算
Canny推荐的高低阈值比在2:1到3:1之间。