应该是最新最详细的MUMmer中文使用说明

如何使用MUMmer比对大片段序列

测序技术刚开始发展的时候,大家得到的序列都是单个基因的长度,所以一般都是逐个基因的比较,用的都是BLAST或FASTA通过逐个基因联配的方式搜索数据库。但是1999年后,越来越多的物种全基因组出现,比如说在1999年出现了Helicobacter pylori的第二类菌株的基因组序列,就需要研究同一物种不同品系进化过程的基因组变化,比如说基因倒置现象。传统的BLAST/FASTA就用不了,就需要用到新的工具,这就是MUMmer出现的历史背景。

那么MUMmer能用来研究什么呢?比如说细菌的不同菌株基因组中倒置现象,人和老鼠的基因组在进化上的重排现象。还有比较同一物种的不同组装结果等。MUMmer的算法基础(suffix tree)使得它的速度比BLASTZ(k-mers)快得多,但是灵敏度低,也就是检测不到比较弱的匹配,但是作者说这都是可以通过修改参数进行改善.

安装

MUMmer是开源软件,因此可以通过下载源码编译的方式进行安装,同时biconda上已经有编译好的二进制版本方便用conda进行安装。目前,我个人比较推荐使用源码编译的方式进行安装。目前MUMmer已经更新到第四版,但是还在测试中,所以文章也没有发,求稳还是用3.23.

多说一句,如果在bioconda频道上搜索mummer, 会发现一个pymummer,不要以为这是mummer的源代码用python改写,它仅仅做到了通过调用系统安装的MUMmer的工具的方式运行而已,并且功能目前实在是太弱了。

# MUMmer3.23
wget https://gigenet.dl.sourceforge.net/project/mummer/mummer/3.23/MUMmer3.23.tar.gz
tar -xf MUMmer3.23.tar.gz
cd  MUMmer3.23
make install
# MUMmer4.00-beta2
wget https://github.com/mummer4/mummer/releases/download/v4.0.0beta2/mummer-4.0.0beta2.tar.gz
tar xf mummer-4.0.0beta2.tar.gz
cd mummer-4.0.0beta2
./configure --prefix=$HOME/biosoft/mummer-4.0.0beta2 && make && make install

为了方便使用记得将软件路径加入PATH。

MUMmer使用方法

MUMmer的核心基于 Maximal exact matching 算法开发的mummer。其他工具(nucmer,promer,run-mummer1.run-mummer3)都是基于mummer的开发的流程。这些流程的分析策略分为三部:

  1. mummer在两个输入中找给定长度的极大唯一匹配( Maximal exact matching )
  2. 然后将这些匹配区域聚类成较大不完全联配区域, 作为锚定点(anchor)
  3. 最后它从每个匹配外部扩展联配, 形成有gap的联配。

Maximal exact matching

MUMmer核心是基于后缀树(suffix tree)数据结构的最大匹配路径。 根据这个算法开发出来的repeat-matchexact-tandems可以从单个序列中检测重复,mummer则是用于联配两条或两条以上的序列。由于MUMmer的其他工具基本都是基于mummer开发的,于是理解mummer就变得非常重要。

概念1:suffix tree: 表示一个字符串的所有子字符串的数据结构,比如说abc的所有子字符串就是a,ab,ac,bc,abc.
概念2:Maximal Unique Match: 指的是匹配仅在两个比较序列中各出现一次

mummer: 基于后缀树(suffix tree)数据结构,能够在两条序列中有效定位极大唯一匹配(maximal unique matches),因此它比较适用于产生一组准确匹配(exact matches)以点图形式展示,或者用来锚定从而产生逐对联配(pair-wise alignments)

大部分情况下都不会直接用到mummer,所以只要知道MUMmer历经几次升级,使得mummer可以能够只找在reference和query都唯一的匹配(第一版功能),也可以找需要在reference唯一的匹配(第二版新增),甚至不在乎是否唯一的匹配(第三版新增),参数分别为-mum,-mumreference,maxmatch

repeat-matchexact-tandems比较少用,毕竟参数也不多,似乎有其他更好的工具能用来寻找序列中的重复区。

Clustering:聚类

MUMmer的聚类算法能够比较智能地把几个独立地匹配按照顺序聚成一块。分为两种模式gapsmgaps。这两者差别在于是否允许重排,分别用于run-mummer1,run-mummer3.

gaps

mgaps

基于gapmgaps的输出,第四版还提供了annotatecombineMUMs两个工具增加联配信息。

联配构建工具

基于上述两个工具,作者编写了4个工作流程,方便实际使用。

  • nucmer: 由Perl写的流程,用于联配很相近(closely related)核酸序列。它比较适合定位和展示高度保守的DNA序列。注意,为了提高nucmer的精确性,最好把输入序列先做遮盖(mask)避免不感兴趣的序列的联配,或者修改单一性限制降低重复导致的联配数。
  • promer:也是Perl写的流程,它以翻译后的氨基酸序列进行联配,工作原理同nucmer.
  • run-mummer1,run-mummer3: 两者是基于cshell写的流程,用于两个序列的常规联配,和promer,nucmer类似,只不过能够自动识别序列类型。它们擅长联配相似度高的DNA序列,找到它们的不同,也就是适合找SNP或者纠错。前者用于1v1无重排,后者1v多有重排

重点介绍一下nucmer的使用。reference和query文件都需要时fasta格式,每个都可以有多条序列。

nucmer [options] <reference> <query file>

参数我将其分为五个部分,匹配算法,聚类,外延、其他和新增

匹配:

--mum, --mumreference(默认), --maxmatch
--minmatch/-l: 单个匹配最小长度
--forwoard/-f, --reverse/-r: 只匹配正链或只匹配负链。

聚类:

--mincluster/-c: 用于聚类的匹配最低长度,默认65
--maxgap/-g: 两个相邻匹配间的最大gap长度,默认90
--diagdiff/-D: 一个聚类中两个邻接匹配,最大对角差分,默认5
--diagfactor/-d: 也是和对角差分相关参数,只不过和gap长度有关,默认0.12

外延:

--breaklen/-b: 在对联配两端拓展式,在终止后继续延伸的程度,默认200
--[no]extend:是否外延,默认是
--[no]optimize:是否优化,默认是。即在联配分数较低时不会立刻终止,而是回顾整条联配,看能否苟延残喘一会。

其他:

--depend: 显示依赖信息后退出
--coords: 调用show-coords输出坐标信息
--prefix/-p: 输出文件的前缀
--[no]delta: 是否输出delta文件,默认是

新增

# 在第四版新增的参数
--threads/-t: 多核心
---delta=PATH: 指定位置,而不是当前
--sam-short=PATH:保存为SAM短格式
--sam-long=PATH: 保存为SAM长格式
--save=PREFIX:保存suffix array
--load=PREIFX:加载suffix array

运行后得到一个delta格式的文件,它的作用是记录每个联配的坐标,每个联配中的插入和缺失的距离。下面逐行进行解释

/home/username/reference.fasta /home/username/query.fasta # 两个比较文件的位置
PROMER # 程序运行类型: NUCMER或PROMER
>tagA1 tagB1 3000000 2000000 # 一组联配(可以有多个小匹配),ref的fastaID,qry的fastaID,ref序列长度,qry序列长度
1667803 1667078 1641506 1640769 14 7 2 # 第一小组 ref起始,ref结束,qry起始,qry结束,错误数(不相同碱基+indel碱基数),相似错误(非正匹配得分) 终止密码子(NUCMER为0)。 如果结束大于起始,表示在负链。
-145 # qry的145有插入
-3   # qry的145+3=148有插入
-1   # qry的145+3+1=149有插入
40   # qry的145+3+1+40=149有缺失
0 # 表示当前匹配结束
1667804 1667079 1641507 1640770 10 5 3 # 第二小组
-146
-1
-1
-34
0

用法举例

两个完整度高的基因组

比较常见的用法是把一条连续的序列和另一条连续的序列比。比如说两个细菌的菌株,直接用mummer

wget http://mummer.sourceforge.net/examples/data/H_pylori26695_Eslice.fasta
wget http://mummer.sourceforge.net/examples/data/H_pyloriJ99_Eslice.fasta
mummer -mum -b -c H_pylori26695_Eslice.fasta H_pyloriJ99_Eslice.fasta > 26695_J99.mums
# -mum: 计算在两个序列中唯一的最大匹配数
# -b: 计算正向和反向匹配数
# -c: 报告反向互补序列相对于原始请求序列的位置

或者是高度相似序列,不含重排

run-mummer1 ref.fasta qry.fasta ref_qry
# 仅报告负链匹配序列
run-mummer1 ref.fasta qry.fasta ref_qry -r

或者是高度相似序列,存在重排现象

run-mummer3 ref.fasta qry.fasta ref_qry

以上的run-mummer*比较关注序列的不同之处,那么对于相似度没有那么高的两个序列,就需要用到nucmernucmer关注序列的相似之处,所以它允许重排,倒置和重复现象。nucmer允许多对多的比较方式,当然比较常用的是多对一的比较。

nucmer --maxgap=500 --mincluster=100 --prefix=ref_qry ref.fasta qry.fasta
## --maxgap: 两个match间最大gap为500
##--minclster: 至少要有100个match才能算做一簇

注意一点: 第四版中run-mummer1, run-mummer3已经被废弃了,就是尽管保留了,但是没有对它做任何升级的意思。

如果是有点差异的两个序列,可以用翻译的氨基酸序列进行比较

promer --prefix=ref_qry ref.fasta qry.fasta

两个基因草图

上面都是两条序列间的比较,但是研究植物的人更容易遇到的是两个物种的基因组都只有scafold级别,甚至是contig级别。那么就可以使用nucmerpromer构建序列间的可能联配。

# 首先过滤低于1kb的序列
bioawk -c fastx '{if (length($seq) > 1000) print ">"$name "\n"$seq}' ~/reference/genome/rice_contigs/HP1 > HP103_1kb.fa
bioawk -c fastx '{if (length($seq) > 1000) print ">"$name "\n"$seq}' ~/reference/genome/rice_contigs/HP119.fa > HP119_1kb.fa
# 处理,时间会比较久,因为分别有20109,17877条contig
nucmer --prefix HP103_HP119 HP103_1kb.fa HP119_1kb.fa &

一个基因草图对一个完整基因组

这里可以比较一下水稻日本晴基因组和其他地方品种

nucmer  --prefix IRGSP1_DHX2 ~/reference/genome/IRGSP1.0/IRGSP-1.0_genome.fasta ~/reference/genome/rice_contigs/DHX2.fa

在第四版中新增了一个dnadiff,进一步封装nucmer和其他数据整理工具,基本上没啥参数,而输出很齐全,非常的人性化。在不知如何开始的时候,可以无脑用这个。

# 已有delta文件
dnadiff -d IRGSP1_DHX2.delta
# 未有delta文件
dnadiff IRGSP1_DHX2 ~/reference/genome/IRGSP1.0/IRGSP-1.0_genome.fasta ~/reference/genome/rice_contigs/DHX2.fa

数据整理

之前得到的数据还需要用delta-filter,show-coordsshow-tilling进行进一步整理才能用于后续的分析。后续操作基于上面的基因草图和完成基因组比较结果。

最初的比对结果保留了最多的信息,需要用delta-filter进行一波过滤,除去不太合适的部分。过滤选项有

  • -i: 最小的相似度 [0,100], 默认0
  • -l: 最小的匹配长度 默认0.
  • -u: 最小的联配唯一度 [0,100], 默认0
  • -o: 最大重叠度,针对-r-q设置。 [0,100], 默认100
  • -g: 1对1全局匹配,不允许重排
  • -1: 1对1联配,允许重排,是-r-q的交集
  • -m: 多对对联配,允许重排,是-r-q的合集。
  • -q: 仅保留每个query在reference上的最佳位置,允许多条query在reference上重叠
  • -r: 仅保留每个reference在query上的最佳位置,允许多条reference在query上重叠

以上顺序是-i -l -u -q -r -g -m -1.光看参数估计不太明白,来一波图解。referece的一个片段可以联配到query的多个片段上,同样的query的一个片段也可以联配到reference的多个片段上,那么如何取舍呢?

多对多

通过-i,-l可以先过滤一些比较短,并且相似度比较低的匹配情况。进一步,计算长度和相似度的乘积(加权最长增加子集),对于-q而言就是保留左2,对于-r则是保留右3. 这就是传说中的三角关系,这种关系可以用-m保留或者用-q消灭。

比如说我想看contig和reference两者唯一匹配,并且长度在1000,相似度大于90.

delta-filter -i 89 -l 1000 -1 IRGSP1_DHX2.delta > IRGSP1_DHX2_i89_l1000_1.delta.filter

如何才能验证上面参数运行的结果是符合要求的呢?毕竟数据分析第一原则“不要轻易相信分析结果,需要多次验证才能使用”。

可以先用show-coord以人类可读的格式显示匹配的坐标。

show-coords -r IRGSP1_DHX2_i89_l1000_1.delta.filter > IRGSP1_DHX2_i89_l1000_1.coord
# -r:以refID排序,相对的,还有-q,以queryID排序
less IRGSP1_DHX2_i89_l1000_1.coord

不难发现这个位置锚定的非常不错,至少暂时看起来没有重叠之处

coord信息

show-aligns看某一个匹配的序列比对情况。

show-aligns IRGSP1_DHX2_i89_l1000_1.delta.filter chr01 DHX2_00006753 | less
alignment

针对reference有很长的组装序列的情况,还可以用show-tilling将contig回贴到reference上,如果装了gnuplot还能用mummerplot可视化点图.show-tiling会尝试根据contig和reference匹配信息构建出tiling path(不好翻译呀。。),不怎么用得到。

顺便放一下自己的知识星球,如果你觉得我对你有帮助的话。


知识星球
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350