这筐鸡蛋有多少?——趣题解析

图片发自简书App

一筐鸡蛋:
1个1个拿,正好拿完。
2个2个拿,还剩1个。
3个3个拿,正好拿完。
4个4个拿,还剩1个。
5个5个拿,还差1个。
6个6个拿,还剩3个。
7个7个拿,正好拿完。
8个8个拿,还剩1个。
9个9个拿,正好拿完。
问筐里最少有多少鸡蛋?

        这是一个网上流传的有点儿趣味的问题,可以作为消遣。这个问题可以归结到求不定方程的正整数解,和韩信点兵问题类似,是属于初等数论的问题。关键是在众多的条件中找出本质的东西来。

第一个条件是废话。

第二个条件说明鸡蛋是奇数。

第三个条件被第九个条件涵盖了,就是说被9整除的数一定能被3整除。

第四个条件被第八个条件涵盖了,就是说被8除余1的数被4除必定余1。

第五个条件可以假设鸡蛋数x=5n+4,(n为正整数)。

第六个条件归结为鸡蛋数是9的奇数倍就行(因为9的偶数倍中含有因子6)。

因为7与9互质,所以第七第九个条件合并为鸡蛋数必须是63的整数倍。

第八个条件可以假设鸡蛋数

x=8m+1,(m为正整数)。

        综合上面的分析,鸡蛋数必须满足:

1、63的奇数倍;

2、5n+4=8m+1,即8m-5n=3。解这个二元一次不定方程,得到满足此条件的鸡蛋数x=40t+9,(t为正整数)。

        于是,所有需要满足的条件等价于下列不定方程:

63(2k-1)=40t+9

整理得:63k-20t=36

解这个二元一次不定方程得通解

k=12+20i

t=36+63i (i为非负整数)

i=0时,得k=12,代入63(2k-1),得鸡蛋最少有1449个。

        下面给出一个解法,也许对于非专业的人来说更通俗易懂。

        由上面的分析知道,首先是鸡蛋数必须是63的奇数倍。然后考虑第五个条件。

        被5除余4的奇数有什么特征呢?不难得到这个数必须是5的奇数倍再加上4(否则,5的偶数倍加上4成了偶数了),因此,这个数的个位数必须是9。

        63用一个奇数去乘,要使得个位数出现9,那么,这个奇数的个位数必须是3,比如:

63×3=189;63×13=819;

63×23=1449;63×33=2079……

然后用8去试除,余1的就是答案。1449正好满足。

        抛砖引玉,希望网友有更好的解法。

图片发自简书App
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容