DarkNet安装——批量测试

目标:实现批量预测,保存预测结果及原图标注后的图片

安装

mkdir release
cd release
cmake ..
make -j`nproc`

批量测试

1.在darknet可执行文件目录下手动建立result_imgresult_labels文件(用于程序时运行相关文件的保存,建立一个空文件夹即可)
result_img:保存检测到的图像(原图标注)
result_labels:保存与检测图像同名的txt文件,内容是预测结果(cls,xmin,ymin,wight,high)或者绝对位置(xmin,ymin,wight,high)——目前是后者,可以根据实际情况修改

0 0.240625 0.591912 0.181250 0.323529
or 177.0 76.0 308.0 289.0

2.将批量待检测的test.txt文件保存在该文件夹
内容:所有待测图片的绝对路径

/media/scut214/data/XZY/paper/MyCFTrackers/Mosse/people/PeopleDec_1_1.jpg
/media/scut214/data/XZY/paper/MyCFTrackers/Mosse/people/PeopleDec_1_2.jpg

3.执行批量预测指令

./darknet detector test ../train_head/cfg/my_yolo.data \
    ../train_head/cfg/weight/yolov4-tiny_train.cfg \
    ../train_head/weights/yolov4-tiny_train_020000_480_288.weights \
    test.txt #测试批训练程序

代码修改方法

src/detector.c文件的void test_detector()上方增加以下辅助函数

//读取文件名,包括后缀
char *GetFilename(char *p)
{
    static char name[40] = { "" };
    char *q = strrchr(p, '/') + 1;
    strncpy(name, q, 35);//后面的35是图片名长度(不包括后缀),根据自己的需要进行修改
    return name;
}
//判断文件是不是图片
typedef enum {false, true} bool;
bool IsImageByTail(char *path)
{
    char str[6];
    strncpy(str,path+(strlen(path))-4,4);
    if(strncmp(str,".jpg",4) == 0 || strncmp(str,".png",4) == 0)
        return true;
    else        
        return false;
}

test_detector函数中添加代码

void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
    float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers)
{
    list *options = read_data_cfg(datacfg);
    char *name_list = option_find_str(options, "names", "data/names.list");
    int names_size = 0;
    char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);

    image **alphabet = load_alphabet();
    network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
    if (weightfile) {
        load_weights(&net, weightfile);
    }
    net.benchmark_layers = benchmark_layers;
    fuse_conv_batchnorm(net);
    calculate_binary_weights(net);
    if (net.layers[net.n - 1].classes != names_size) {
        printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
            name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
        if (net.layers[net.n - 1].classes > names_size) getchar();
    }
    srand(2222222);
    char buff[256];
    char *input = buff;
    char *json_buf = NULL;
    int json_image_id = 0;
    FILE* json_file = NULL;
    if (outfile) {
        json_file = fopen(outfile, "wb");
        if(!json_file) {
          error("fopen failed");
        }
        char *tmp = "[\n";
        fwrite(tmp, sizeof(char), strlen(tmp), json_file);
    }
    int j;
    float nms = .45;    // 0.4F
    //开始循环//
    while (1) {
// 只添加了一个if (filename){},其他完全保留
        if (filename) {
            strncpy(input, filename, 256);
            // 确保可以预测单张图片和批量图片
            list *plist;
            char **paths;
            if (IsImageByTail(input)){ //预测单张图片处理方法,输入为.jpg
                plist = make_list();
                list_insert(plist, input);
            }
            else
            { //预测多张图片处理方法,输入为.txt
                plist = get_paths(input);
            }
            paths = (char **)list_to_array(plist);

            printf("Start Testing!\n");
            int m = plist->size;
 
            for (int i = 0; i < m; ++i) {
                char *path = paths[i];
                image im = load_image(path, 0, 0, net.c);
                int letterbox = 0;
                image sized = resize_image(im, net.w, net.h);
                //image sized = letterbox_image(im, net.w, net.h); letterbox = 1;
                layer l = net.layers[net.n - 1];
                float *X = sized.data;
                double time = get_time_point();
                network_predict(net, X);
                printf("%s: Predicted in %lf milli-seconds.\n", input, ((double)get_time_point() - time) / 1000);
                printf("Try Very Hard:");
                printf("%s: Predicted in %lf milli-seconds.\n", path, ((double)get_time_point() - time) / 1000);
                int nboxes = 0;
                detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
                if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
                // draw_detections_v3(basecfg(input), im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output);
                draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output);
 
                char b[2048];
                sprintf(b, "./result_img/%s", GetFilename(path));     //***改成自己的预测结果保存文件夹路径
                save_image(im, b);
                printf("save %s successfully!\n", GetFilename(path));//文件命名在这个地方,可改为i
                //--------------如果是单张图片,则显示检测结果,否则不显示------------
                if (!dont_show && IsImageByTail(input)) {
                    show_image(im, "predictions");
                    wait_until_press_key_cv();
                    destroy_all_windows_cv();
                }  
                //----------------------为每张图片保存检测结果-------------------------------------- 
                save_labels = 1;             
                if (save_labels)
                {
                    printf("save labels\n");
                    char labelpath[4096];
                    //------------------保存预测结果labels到指定文件夹下---------------
                    char b[2048];
                    sprintf(b, "./result_labels/%s", GetFilename(path));
                    replace_image_to_label(b, labelpath);
                    printf("labelpath:%s\n", labelpath);
                    //------------------------------------------------------
                    FILE* fw = fopen(labelpath, "wb");
                    int i;
                    for (i = 0; i < nboxes; ++i) {
                        char buff[1024];
                        int class_id = -1;
                        float prob = 0;
                        for (j = 0; j < l.classes; ++j) {
                            if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) {
                                prob = dets[i].prob[j];
                                class_id = j;
                            }
                        }
                        if (class_id >= 0) {
                            sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h);
                            //---------------保存实际xmin,ymin,with,high---------------------------
                            sprintf(buff, "%.1f %.1f %.1f %.1f\n", 
                                round((dets[i].bbox.x - dets[i].bbox.w / 2)*im.w),
                                round((dets[i].bbox.y - dets[i].bbox.h / 2)*im.h),
                                round(dets[i].bbox.w*im.w),
                                round(dets[i].bbox.h*im.h));
                            //---------------------------------------------------------------------
                            fwrite(buff, sizeof(char), strlen(buff), fw);
                        }
                    }
                    fclose(fw);
                }
                free_detections(dets, nboxes);
                free_image(im);
                free_image(sized);
            }
        
            printf("All Done!\n");
            
            exit(0);
             
          
        }//以上为添加的内容,下面的else可以整体删掉
        else {
               //这里这个if可以删掉,为了更好地看到哪里改动了,这块我就没有删。
            if (filename) {
                strncpy(input, filename, 256);
                if (strlen(input) > 0)
                    if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
            }
            else {
                printf("Enter Image Path: ");
                fflush(stdout);
                input = fgets(input, 256, stdin);
                if (!input) break;
                strtok(input, "\n");
            }
            //image im;
            //image sized = load_image_resize(input, net.w, net.h, net.c, &im);
            image im = load_image(input, 0, 0, net.c);
            image sized;
            if(letter_box) sized = letterbox_image(im, net.w, net.h);
            else sized = resize_image(im, net.w, net.h);
            layer l = net.layers[net.n - 1];

            //box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
            //float **probs = calloc(l.w*l.h*l.n, sizeof(float*));
            //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float));

            float *X = sized.data;

            //time= what_time_is_it_now();
            double time = get_time_point();
            network_predict(net, X);
            //network_predict_image(&net, im); letterbox = 1;
            printf("%s: Predicted in %lf milli-seconds.\n", input, ((double)get_time_point() - time) / 1000);
            //printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time));

            int nboxes = 0;
            detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter_box);
            if (nms) {
                if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
                else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
            }
            draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output);
            save_image(im, "predictions");
            if (!dont_show) {
                show_image(im, "predictions");
            }

            if (json_file) {
                if (json_buf) {
                    char *tmp = ", \n";
                    fwrite(tmp, sizeof(char), strlen(tmp), json_file);
                }
                ++json_image_id;
                json_buf = detection_to_json(dets, nboxes, l.classes, names, json_image_id, input);

                fwrite(json_buf, sizeof(char), strlen(json_buf), json_file);
                free(json_buf);
            }

            // pseudo labeling concept - fast.ai
            if (save_labels)
            {
                char labelpath[4096];
                replace_image_to_label(input, labelpath);

                FILE* fw = fopen(labelpath, "wb");
                int i;
                for (i = 0; i < nboxes; ++i) {
                    char buff[1024];
                    int class_id = -1;
                    float prob = 0;
                    for (j = 0; j < l.classes; ++j) {
                        if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) {
                            prob = dets[i].prob[j];
                            class_id = j;
                        }
                    }
                    if (class_id >= 0) {
                        sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h);
                        fwrite(buff, sizeof(char), strlen(buff), fw);
                    }
                }
                fclose(fw);
            }

            free_detections(dets, nboxes);
            free_image(im);
            free_image(sized);

            if (!dont_show) {
                wait_until_press_key_cv();
                destroy_all_windows_cv();
            }

            if (filename) break;
        }
    }

    if (json_file) {
        char *tmp = "\n]";
        fwrite(tmp, sizeof(char), strlen(tmp), json_file);
        fclose(json_file);
    }

    // free memory
    free_ptrs((void**)names, net.layers[net.n - 1].classes);
    free_list_contents_kvp(options);
    free_list(options);

    int i;
    const int nsize = 8;
    for (j = 0; j < nsize; ++j) {
        for (i = 32; i < 127; ++i) {
            free_image(alphabet[j][i]);
        }
        free(alphabet[j]);
    }
    free(alphabet);

    free_network(net);
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
禁止转载,如需转载请通过简信或评论联系作者。