R语言机器学习与临床预测模型37--神经网络

本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程

R小盐准备介绍R语言机器学习与预测模型的学习笔记

你想要的R语言学习资料都在这里, 快来收藏关注【科研私家菜】


01 神经网络

人工神经网络(Artificial Neural Network)简单而言是一种分类算法,是机器学习和认知科学领域中一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。。作为机器学习的一个庞大分支,人工神经网络目前大约有几百种算法,其中包括一些著名的ANN算法:感知器神经网络(Perceptron Neural Network), 反向传递(Back Propagation), Hopfield网络和自组织映射(Self-Organizing Map, SOM)等等。
分类器的输入是一个数值向量,叫做属性或者特征。分类器的目的就是要使正确分类的可能性尽可能的高,错分的概率尽可能的低,一般我们会人为的划分一些样本做好标记作为训练样本,训练好的样本拿来对测试样本进行检验,这就是一个分类算法的基本原理。人工神经网络是一种监督分类算法。
神经网络由三部分组成,分别是最左边的输入层,隐藏层(实际应用中远远不止一层)和最右边的输出层。层与层之间用线连接在一起,每条连接线都有一个对应的权重值 w,除了输入层,一般来说每个神经元还有对应的偏置



02 神经网络R语言实现

R语言有多个关于神经网络的包,包括nnet、AMORE、neuralnet和RSSNS包,nnet提供了最常见的前馈反向传播神经网络算法。AMORE包则更进一步提供了更为丰富的控制参数,并可以增加多个隐藏层。neuralnet包的改进在于提供了弹性反向传播算法和更多的激活函数形式,而RSNNS包则扩充了其它拓扑结构和网络模型。


library(caret)
library(MASS)
library(neuralnet)
library(vcd)

data(shuttle)
str(shuttle)
table(shuttle$use)
table1 <- structable(wind + magn ~ use, shuttle)
table1
mosaic(table1, shade = T)
mosaic(use ~ error + vis, shuttle)
table(shuttle$use, shuttle$stability)
prop.table(table(shuttle$use, shuttle$stability))
chisq.test(shuttle$use, shuttle$stability)

dummies <- dummyVars(use ~. ,shuttle, fullRank = T)
dummies
shuttle.2 <- data.frame(predict(dummies, newdata = shuttle))
names(shuttle.2)
head(shuttle.2)
shuttle.2$use <- ifelse(shuttle$use == "auto", 1, 0)
table(shuttle.2$use)
set.seed(123)
trainIndex <- createDataPartition(shuttle.2$use, p = .7,
                                  list = F)
# head(trainIndex)
shuttleTrain <- shuttle.2[ trainIndex, ]
shuttleTest  <- shuttle.2[-trainIndex, ]

#### 模型构建与评价 -------
n <- names(shuttleTrain)
form <- as.formula(paste("use ~", paste(n[!n %in% "use"], collapse = " + ")))
form

set.seed(1)
fit <- neuralnet(form, data = shuttleTrain, hidden = c(2, 1), err.fct = "ce", 
                 linear.output = F)
fit$result.matrix
head(fit$generalized.weights[[1]])
plot(fit)
par(mfrow=c(1,2))
gwplot(fit, selected.covariate = "vis.yes")
gwplot(fit, selected.covariate = "wind.tail")

resultsTrain <- compute(fit, shuttleTrain[, 1:10])
predTrain <- resultsTrain$net.result

predTrain <- ifelse(predTrain >= 0.5, 1, 0)
table(predTrain, shuttleTrain$use)

resultsTest <- compute(fit, shuttleTest[,1:10])
predTest <- resultsTest$net.result
predTest <- ifelse(predTest >= 0.5, 1, 0)
table(predTest, shuttleTest$use)

which(predTest == 1 & shuttleTest$use == 0)

效果如下:


关注R小盐,关注科研私家菜(VX_GZH: SciPrivate),有问题请联系R小盐。让我们一起来学习 R语言机器学习与临床预测模型

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357

推荐阅读更多精彩内容