直方图均衡化
cv2.equalizeHist函数原型:equalizeHist(src[, dst]) 。函数equalizeHist的作用:直方图均衡化,提高图像质量。
createCLAHE函数原型:createCLAHE([, clipLimit[, tileGridSize]]) -> retval
clipLimit参数表示对比度的大小。
tileGridSize参数表示每次处理块的大小 。
import cv2 as cv
import numpy
def equalHist_demo(image):
# 全局直方图均衡化
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) # opencv的直方图均衡化要基于单通道灰度图像
dst = cv.equalizeHist(gray) # 自动调整图像对比度,把图像变得更清晰
cv.imshow("equalHist_demo", dst)
def clahe_demo(image):
# 局部直方图均衡化
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
clahe = cv.createCLAHE(clipLimit=10.0, tileGridSize=(8, 8))
dst = clahe.apply(gray)
cv.imshow("clahe_demo", dst)
def create_rgb_demo(image):
height, width, channel = image.shape
rgbHist = numpy.zeros([16*16*16, 1], numpy.float32)
bsize = 256 / 16
for row in range(height):
for col in range(width):
b = image[row, col, 0]
g = image[row, col, 1]
r = image[row, col, 2]
# 下降成16个bin,由256*256*256降维4096
# 不是很懂
index = numpy.int(b/bsize)*16*16 + numpy.int(g/bsize)*16 + numpy.int(r/bsize)
rgbHist[numpy.int(index), 0] = rgbHist[numpy.int(index), 0] + 1
return rgbHist
def hist_compare(image1, image2):
hist1 = create_rgb_demo(image1)
hist2 = create_rgb_demo(image2)
match1 = cv.compareHist(hist1, hist2, cv.HISTCMP_BHATTACHARYYA) # 越小越相似
match2 = cv.compareHist(hist1, hist2, cv.HISTCMP_CORREL) # 越大越相似
match3 = cv.compareHist(hist1, hist2, cv.HISTCMP_CHISQR) # 越小越相似
print("巴氏距离:%s 相关性:%s 卡方:%s" % (match1, match2, match3))
src = cv.imread("./data/lena.jpg", cv.IMREAD_COLOR)
cv.namedWindow("lena", cv.WINDOW_AUTOSIZE)
cv.imshow("lena", src)
equalHist_demo(src)
clahe_demo(src)
# image1 = cv.imread("./data/lena.jpg")
# image2 = cv.imread("girl.jpg")
# cv.imshow("image1", image1)
# cv.imshow("image2", image2)
# hist_compare(image1, image2)
cv.waitKey(0)
cv.destroyAllWindows()
直方图均衡化.png
直方图比较结果
巴氏距离:0.9759536695421235 相关性:-0.006443074743513555 卡方:121843214.63453875