今天的主题,不用写序言,看上图就懂
如何用SQL的方式操作一个文件
先举例
- 想知道history命令里,敲得最多的是哪个?
- 当然,sed,awk完全可以做到,但是,如果用SQL怎么做?
history | awk '{print $1"\t"$2}' | clickhouse-client \
--query="SELECT shell, count() AS c FROM history \
GROUP BY shell ORDER BY c DESC limit 10 " \
--external --file=- --name=history \
--structure='id UInt16, shell String' -h 127.0.0.1
ls 390
cd 243
clickhouse-client 173
du 67
vim 57
htop 42
cat 28
history 27
tailf 25
mysql 24
原理
- ClickHouse支持把一个外部文件,加载到内部的一个临时表中,对这个临时表进行SQL化操作
格式
--external --file=... [--name=...] [--format=...] [--types=...|--structure=...]
-
--external
表示这个操作是外部文件的 -
--file=...
指定一个文件,如果是标准输入,则写-
-
[--name=...]
表名,如果忽略,默认给_data
-
[--format=...]
列分隔符,默认是TabSeparated
- `[--types=...|--structure=...] 这句不解释了,看上面的例子就好了
再来一个测试
- 为了模拟一个有意义的场景,我们选了ClickHouse的system.parts这个表,里面记录的是ClickHouse的分区信息,表结构如下
partition: 201709
name: 20170903_20170905_2_2963928_22
replicated: 0
active: 1
marks: 23372
rows: 191456971
bytes: 93294984484
modification_time: 2017-09-05 23:37:33
remove_time: 0000-00-00 00:00:00
refcount: 2
min_date: 2017-09-03
max_date: 2017-09-05
min_block_number: 2
max_block_number: 2963928
level: 22
primary_key_bytes_in_memory: 93488
primary_key_bytes_in_memory_allocated: 196608
database: xx
table: xx
engine: MergeTree
- 我们导出一份数据,作为测试文件
- 默认导出的文件是tab分割
clickhouse-client -h 127.0.0.1 -m -d system -q "select * from parts " > test.sql
- 目标SQL
- 找某个表的分区数据,即有几个分区,分区文件多大
SELECT
partition,
count() AS number_of_parts,
formatReadableSize(sum(bytes)) AS sum_size
FROM system.parts
WHERE active AND (database = 'xxxx') AND (table = 'xxxx_msg')
GROUP BY partition
ORDER BY partition ASC
- 文件SQL
root@10.xxxx:/root # wc -l test.sql
11991 test.sql
root@10.xxxx:/root # clickhouse-client \
--query="SELECT partition, count() AS number_of_parts, \
formatReadableSize(sum(bytes)) AS sum_size FROM parts \
WHERE active AND (database = 'xxxx') AND (table = 'xxxx_msg') \
GROUP BY partition ORDER BY partition ASC ;" \
--external --file=test.sql --name=parts \
--structure='partition UInt16,name String,replicated UInt16,active UInt16,marks UInt16,rows UInt16,bytes UInt16,modification_time String,remove_time String,refcount UInt16,min_date String,max_date String,min_block_number UInt16,max_block_number UInt16,level UInt16,primary_key_bytes_in_memory UInt16,primary_key_bytes_in_memory_allocated UInt16,database String,table String,engine String' \
-h 127.0.0.1
201709 36 1.68 TiB
201710 26 1.42 TiB
201711 30 1.42 TiB
201712 31 963.07 GiB
注意事项
- 文件操作虽然方便,但是官方文档也提到了,如果是特别大的文件,还是不要这么玩了
- 另外,这个文件SQL其实还是要依赖ClickHouse-Server的,如果你没有启动Server,玩不了的哦~